作者:俊欣
来源:关于数据分析与可视化
今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql
要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql
我们首先导入数据
import pandas as pd from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()
output
我们先对导入的数据集做一个初步的探索性分析,
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD", "UnitPrice(USD)":"UnitPrice_USD", "Delivery_Time(Days)":"Delivery_Time_Days"},
inplace=True)
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df
与Pandas模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df" df_orders = sqldf(query) df_orders.head()
output
我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT *
FROM df_orders
WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head()
output
而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya' AND Quantity < 40 AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head()
output
同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address"
df_group = sqldf(query)
df_group.head(10)
output
而排序在SQL当中则是用ORDER BY,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address ORDER BY Orders"
df_group = sqldf(query)
df_group.head(10)
output
我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID,
Quantity,
Product_Code,
Product_Category,
UnitPrice_USD
FROM df" df_products = sqldf(query) df_products.head()
output
我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下
query = "SELECT T1.OrderID,
T1.Shipping_Address,
T2.Product_Category
FROM df_orders T1
INNER JOIN df_products T2
ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head()
output
在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address,
ShippingCost_USD FROM df LIMIT 10"
df_orders_limit = sqldf(query)
df_orders_limit
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03