京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql
要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql
我们首先导入数据
import pandas as pd from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()
output
我们先对导入的数据集做一个初步的探索性分析,
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD", "UnitPrice(USD)":"UnitPrice_USD", "Delivery_Time(Days)":"Delivery_Time_Days"},
inplace=True)
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df
与Pandas模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df" df_orders = sqldf(query) df_orders.head()
output
我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT *
FROM df_orders
WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head()
output
而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya' AND Quantity < 40 AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head()
output
同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address"
df_group = sqldf(query)
df_group.head(10)
output
而排序在SQL当中则是用ORDER BY,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address ORDER BY Orders"
df_group = sqldf(query)
df_group.head(10)
output
我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID,
Quantity,
Product_Code,
Product_Category,
UnitPrice_USD
FROM df" df_products = sqldf(query) df_products.head()
output
我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下
query = "SELECT T1.OrderID,
T1.Shipping_Address,
T2.Product_Category
FROM df_orders T1
INNER JOIN df_products T2
ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head()
output
在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address,
ShippingCost_USD FROM df LIMIT 10"
df_orders_limit = sqldf(query)
df_orders_limit
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22