京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
Pyecharts这个可视化库火爆,关于它,官方如是说:Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
前几天在Python交流群里边,有人就遇到了Pyecharts库版本的问题,目前来看,Pyecharts分为V1和V0.5两个大版本,而且两个版本之间不兼容。换句话说,如果你自己的Pyecharts版本是V1展示的话,代码给到别人,如果别人的Pyecharts版本是V0.5的话,运行之后,是会报错的,反之亦然。举个例子,当前小编的Pyecharts版本是V1,可以正常运行代码。
然后小编跑了别人手里Pyecharts为V0.5的代码,然后就出现下图的问题:
一般出现类似这种问题的话,就是Pyecharts版本不兼容导致的。基于此,这里给出一个笨方法,用来切换Pyecharts V1和V0.5,这样也是给大家一点启发。当然了,话说回来,V0.5版本将不再进行维护,这里小编也是建议大家都用最新版本V1,只不过目前还在过渡期,很多网上的代码,大都是V0.5版本写的,所以学点本文这个小技巧,兴许可以帮到你。
1、V0.5-->V1
假设你当前的版本是V0.5,如果想升级到V1,那就非常简单了,只需要操作一步,在命令行中输入升级命令:pip install -U pyecharts即可。
这样就轻松实现了升级切换:
假设你当前的版本是V1,如果想回退到版本V0.5,那就稍微复杂一些,需要你直接输入安装命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==0.5.10这里小编没来得及截图,总之肯定好使就是了。之后安装好之后,还需要安装几个依赖库和相关地图库文件,这样才可以加载地图,命令如下:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==0.5.10 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-misc-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-united-kingdom-pypkg
pip install pyecharts_snapshot
如果不安装地图依赖文件的话,那么代码运行之后,程序不会报错,但是生成的html文件就会出现无图的情况,没有数据显示,如下图所示。
如果安装了地图相关库之后,就会正常显示出来。
我是Python进阶者。本文基于Python中的可视化库Pyecharts两个不兼容的版本,盘点了Pyecharts V1和V0.5之间的切换方法。
总的来说,针对pyecharts v1.0安装,可以直接由v0.5进行升级即可;如果想切换为v0.5,直接进行安装即可,关于升级和安装的命令详情请见内文。文中提供的方法虽然笨重了一些,但是亲测可行。小编相信肯定还有其他的方法的,也欢迎大家在评论区谏言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15