京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
Pyecharts这个可视化库火爆,关于它,官方如是说:Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
前几天在Python交流群里边,有人就遇到了Pyecharts库版本的问题,目前来看,Pyecharts分为V1和V0.5两个大版本,而且两个版本之间不兼容。换句话说,如果你自己的Pyecharts版本是V1展示的话,代码给到别人,如果别人的Pyecharts版本是V0.5的话,运行之后,是会报错的,反之亦然。举个例子,当前小编的Pyecharts版本是V1,可以正常运行代码。
然后小编跑了别人手里Pyecharts为V0.5的代码,然后就出现下图的问题:
一般出现类似这种问题的话,就是Pyecharts版本不兼容导致的。基于此,这里给出一个笨方法,用来切换Pyecharts V1和V0.5,这样也是给大家一点启发。当然了,话说回来,V0.5版本将不再进行维护,这里小编也是建议大家都用最新版本V1,只不过目前还在过渡期,很多网上的代码,大都是V0.5版本写的,所以学点本文这个小技巧,兴许可以帮到你。
1、V0.5-->V1
假设你当前的版本是V0.5,如果想升级到V1,那就非常简单了,只需要操作一步,在命令行中输入升级命令:pip install -U pyecharts即可。
这样就轻松实现了升级切换:
假设你当前的版本是V1,如果想回退到版本V0.5,那就稍微复杂一些,需要你直接输入安装命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==0.5.10这里小编没来得及截图,总之肯定好使就是了。之后安装好之后,还需要安装几个依赖库和相关地图库文件,这样才可以加载地图,命令如下:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==0.5.10 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-misc-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-united-kingdom-pypkg
pip install pyecharts_snapshot
如果不安装地图依赖文件的话,那么代码运行之后,程序不会报错,但是生成的html文件就会出现无图的情况,没有数据显示,如下图所示。
如果安装了地图相关库之后,就会正常显示出来。
我是Python进阶者。本文基于Python中的可视化库Pyecharts两个不兼容的版本,盘点了Pyecharts V1和V0.5之间的切换方法。
总的来说,针对pyecharts v1.0安装,可以直接由v0.5进行升级即可;如果想切换为v0.5,直接进行安装即可,关于升级和安装的命令详情请见内文。文中提供的方法虽然笨重了一些,但是亲测可行。小编相信肯定还有其他的方法的,也欢迎大家在评论区谏言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15