京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:俊欣
作者:关于数据分析与可视化
有粉丝问道说“是不是可以将这些动态的可视化图表保存成gif图”,小编立马就回复了说后面会写一篇相关的文章来介绍如何进行保存gif格式的文件。那么我们就开始进入主题,来谈一下Python当中的gif模块。
首先第一步的话我们需要安装相关的模块,通过pip命令来安装
pip install gif
另外由于gif模块之后会被当做是装饰器放在绘制可视化图表的函数上,主要我们依赖的还是Python当中绘制可视化图表的matplotlib、plotly、以及altair这些模块,因此我们还需要下面这几个库
pip install "gif[altair]" pip install "gif[matplotlib]" pip install "gif[plotly]"
我们先来看gif和matplotlib模块的结合,我们先来看一个简单的例子,代码如下
import random from matplotlib import pyplot as plt import gif
x = [random.randint(0, 100) for _ in range(100)]
y = [random.randint(0, 100) for _ in range(100)]
gif.options.matplotlib["dpi"] = 300 @gif.frame def plot(i): xi = x[i*10:(i+1)*10]
yi = y[i*10:(i+1)*10]
plt.scatter(xi, yi)
plt.xlim((0, 100))
plt.ylim((0, 100))
frames = [] for i in range(10):
frame = plot(i)
frames.append(frame)
gif.save(frames, 'example.gif', duration=3.5, unit="s", between="startend")
output
代码的逻辑并不难理解,首先我们需要定义一个函数来绘制图表并且带上gif装饰器,接着我们需要一个空的列表,通过for循环将绘制出来的对象放到这个空列表当中然后保存成gif格式的文件即可。
除了和matplotlib的联用之外,gif和plotly之间也可以结合起来用,代码如下
import random import plotly.graph_objects as go import pandas as pd import gif
df = pd.DataFrame({ 't': list(range(10)) * 10, 'x': [random.randint(0, 100) for _ in range(100)], 'y': [random.randint(0, 100) for _ in range(100)]
})
@gif.frame
def plot(i):
d = df[df['t'] == i]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=d["x"],
y=d["y"],
mode="markers" ))
fig.update_layout(width=500, height=300) return fig
frames = [] for i in range(10):
frame = plot(i)
frames.append(frame)
gif.save(frames, 'example_plotly.gif', duration=100)
output
整体的代码逻辑和上面的相似,这里也就不做具体的说明了
上面绘制出来的图表都是在单张图表当中进行的,那当然了我们还可以在多张子图中进行动态可视化的展示,代码如下
# 读取数据 df = pd.read_csv('weather_hourly_darksky.csv')
df = df.rename(columns={"time": "date"})
@gif.frame def plot(df, date):
df = df.loc[df.index[0]:pd.Timestamp(date)]
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(10, 6), dpi=100)
ax1.plot(df.temperature, marker='o', linestyle='--', linewidth=1, markersize=3, color='g')
maxi = round(df.temperature.max() + 3)
ax1.set_xlim([START, END])
ax1.set_ylim([0, maxi])
ax1.set_ylabel('TEMPERATURE', color='green')
ax2.plot(df.windSpeed, marker='o', linestyle='--', linewidth=1, markersize=3, color='b')
maxi = round(df.windSpeed.max() + 3)
ax2.set_xlim([START, END])
ax2.set_ylim([0, maxi])
ax2.set_ylabel('WIND', color='blue')
ax3.plot(df.visibility, marker='o', linestyle='--', linewidth=1, markersize=3, color='r')
maxi = round(df.visibility.max() + 3)
ax3.set_xlim([START, END])
ax3.set_ylim([0, maxi])
ax3.set_ylabel('VISIBILITY', color='red')
frames = [] for date in pd.date_range(start=df.index[0], end=df.index[-1], freq='1M'):
frame = plot(df, date)
frames.append(frame)
gif.save(frames, "文件名称.gif", duration=0.5, unit='s')
output
最后我们用plotly模块来绘制一个动态的气泡图,代码如下
import gif import plotly.graph_objects as go import numpy as np np.random.seed(1) N = 100 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) sz = np.random.rand(N) * 30 layout = go.Layout( xaxis={'range': [-2, 2]}, yaxis={'range': [-2, 2]}, margin=dict(l=10, r=10, t=10, b=10) ) @gif.frame def plot(i): fig = go.Figure(layout=layout) fig.add_trace(go.Scatter( x=x[:i], y=y[:i], mode="markers", marker=go.scatter.Marker( size=sz[:i], color=colors[:i], opacity=0.6, colorscale="Viridis" ) )) fig.update_layout(width=500, height=300) return fig frames = [] for i in range(100): frame = plot(i) frames.append(frame) gif.save(frames, "bubble.gif")
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15