
来源:俊欣
作者:关于数据分析与可视化
有粉丝问道说“是不是可以将这些动态的可视化图表保存成gif图”,小编立马就回复了说后面会写一篇相关的文章来介绍如何进行保存gif格式的文件。那么我们就开始进入主题,来谈一下Python当中的gif模块。
首先第一步的话我们需要安装相关的模块,通过pip命令来安装
pip install gif
另外由于gif模块之后会被当做是装饰器放在绘制可视化图表的函数上,主要我们依赖的还是Python当中绘制可视化图表的matplotlib、plotly、以及altair这些模块,因此我们还需要下面这几个库
pip install "gif[altair]" pip install "gif[matplotlib]" pip install "gif[plotly]"
我们先来看gif和matplotlib模块的结合,我们先来看一个简单的例子,代码如下
import random from matplotlib import pyplot as plt import gif
x = [random.randint(0, 100) for _ in range(100)]
y = [random.randint(0, 100) for _ in range(100)]
gif.options.matplotlib["dpi"] = 300 @gif.frame def plot(i): xi = x[i*10:(i+1)*10]
yi = y[i*10:(i+1)*10]
plt.scatter(xi, yi)
plt.xlim((0, 100))
plt.ylim((0, 100))
frames = [] for i in range(10):
frame = plot(i)
frames.append(frame)
gif.save(frames, 'example.gif', duration=3.5, unit="s", between="startend")
output
代码的逻辑并不难理解,首先我们需要定义一个函数来绘制图表并且带上gif装饰器,接着我们需要一个空的列表,通过for循环将绘制出来的对象放到这个空列表当中然后保存成gif格式的文件即可。
除了和matplotlib的联用之外,gif和plotly之间也可以结合起来用,代码如下
import random import plotly.graph_objects as go import pandas as pd import gif
df = pd.DataFrame({ 't': list(range(10)) * 10, 'x': [random.randint(0, 100) for _ in range(100)], 'y': [random.randint(0, 100) for _ in range(100)]
})
@gif.frame
def plot(i):
d = df[df['t'] == i]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=d["x"],
y=d["y"],
mode="markers" ))
fig.update_layout(width=500, height=300) return fig
frames = [] for i in range(10):
frame = plot(i)
frames.append(frame)
gif.save(frames, 'example_plotly.gif', duration=100)
output
整体的代码逻辑和上面的相似,这里也就不做具体的说明了
上面绘制出来的图表都是在单张图表当中进行的,那当然了我们还可以在多张子图中进行动态可视化的展示,代码如下
# 读取数据 df = pd.read_csv('weather_hourly_darksky.csv')
df = df.rename(columns={"time": "date"})
@gif.frame def plot(df, date):
df = df.loc[df.index[0]:pd.Timestamp(date)]
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(10, 6), dpi=100)
ax1.plot(df.temperature, marker='o', linestyle='--', linewidth=1, markersize=3, color='g')
maxi = round(df.temperature.max() + 3)
ax1.set_xlim([START, END])
ax1.set_ylim([0, maxi])
ax1.set_ylabel('TEMPERATURE', color='green')
ax2.plot(df.windSpeed, marker='o', linestyle='--', linewidth=1, markersize=3, color='b')
maxi = round(df.windSpeed.max() + 3)
ax2.set_xlim([START, END])
ax2.set_ylim([0, maxi])
ax2.set_ylabel('WIND', color='blue')
ax3.plot(df.visibility, marker='o', linestyle='--', linewidth=1, markersize=3, color='r')
maxi = round(df.visibility.max() + 3)
ax3.set_xlim([START, END])
ax3.set_ylim([0, maxi])
ax3.set_ylabel('VISIBILITY', color='red')
frames = [] for date in pd.date_range(start=df.index[0], end=df.index[-1], freq='1M'):
frame = plot(df, date)
frames.append(frame)
gif.save(frames, "文件名称.gif", duration=0.5, unit='s')
output
最后我们用plotly模块来绘制一个动态的气泡图,代码如下
import gif import plotly.graph_objects as go import numpy as np np.random.seed(1) N = 100 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) sz = np.random.rand(N) * 30 layout = go.Layout( xaxis={'range': [-2, 2]}, yaxis={'range': [-2, 2]}, margin=dict(l=10, r=10, t=10, b=10) ) @gif.frame def plot(i): fig = go.Figure(layout=layout) fig.add_trace(go.Scatter( x=x[:i], y=y[:i], mode="markers", marker=go.scatter.Marker( size=sz[:i], color=colors[:i], opacity=0.6, colorscale="Viridis" ) )) fig.update_layout(width=500, height=300) return fig frames = [] for i in range(100): frame = plot(i) frames.append(frame) gif.save(frames, "bubble.gif")
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18