
SPSS分析技术:单因素方差分析
接下来将会介绍如何用SPSS做各种类型的方差分析,包括单因素方差分析,多因素方差分析,协方差分析,多元方差分析,重复测量方差分析和方差成分分析等应用原理和案例。
单因素方差分析
单因素方差分析用于分析单个自变量的不同水平是否对因变量产生显著影响。单因素方差分析将总方差分为两部分:可以由自变量解释的系统误差和无法由自变量解释的随机误差,若系统误差显著超过随机误差,则认为该自变量在取不同水平时因变量均值存在显著差异。
方差分析的原理
前面的文章虽然介绍过单因素方差分析的数据分析过程,这里再简单强调一遍。当样本数据可以做这样的归类处理,如下图所示:
首先,单因素方差分析的成对假设是:
原假设:因素的k个水平的均值相等;
备择假设:因素的k个水平的均值不完全相等;注意是不完全相等,而不是k个均值互不相等。
其次,求取组内方差和组间方差;
组间方差的计算公式为:
组内方差的计算公式为:
第三步是计算F统计量的值,以及做出假设检验判断;
上式中MSB和MSE分布称为组间方差和组内方差。在原假设为真的条件下,统计量服从自由度为k-1和k(n-1)的F分布。如果F统计量观测值较小,说明组内方差大,组间方差小,此时不能拒绝原假设;相反,就要拒绝原假设,认为自变量(因素)的k个水平对自变量有显著影响。SPSS会自动计算F统计量的观测值以及相应的概率P值,根据P值就可以完成统计检验。
案例分析
某体育高校对来自全国各地的2016级新生做了一次抽样检查,对抽到学生的身高、体重和胸围作了测量和记录,并将所有参与抽样体检的学生按省份划分为东部、中部和西部,试图分析来自不同地区学生的身高是否有差异。
问题分析
研究的问题是来自全国不同地区学生的身高是否有差异,可以理解为地区因素是否对学生身高有影响,影响因素(自变量)是地区,地区因素有三个水平(东部,中部和西部),所以适用单因素方差分析(单因素,三水平)。
分析步骤
1、选择菜单【分析】-【比较平均值】-【单因素ANOVA】,在【单因素方差分析】中选择变量【身高】,选入因变量列表;选择【地区】,将其选入因子。程序可以同时对多个因变量进行单因素方差分析,但是【因子】只能选取一个自变量。
2、单击【对比】,打开【单因素ANOVA:对比】。该选项是用来做因素不同水平的均值对比的。将多项式选中,在度中可以选择线性、二次项到五次项,表示可以利用不同的多项式对均值进行对比。我们选中线性,然后再系数中输入-1,0.5,0.5,点击下一页,再输入0.5,-1,0.5,再点击下一页,输入0.5,0.5,-1。表示将东部,中部和西部的均值配上系数进行加减对比。例如第一组系数-1,0.5,0.5,表示-1*东部均值+0.5*中部值+0.5*西部均值。
3、事后多重比较设置
单击【事后多重设置】,打开【单因素ANOVA:事后多重比较】。该对话框包括假定方差齐性和未假定方差齐性的总共18种两两对比方式,具体不同可以点击SPSS的帮助文档。这里我们选择LSD、Tukey和Tamhane’s T2检验。
4、单击【选项】,打开【单因素ANVOA】,选中描述性、方差齐性检验和平均值图。
结果解释
1、描述性统计表。
从描述性统计量表可以看出东部地区学生的平均身高和中西部的差异较大,而中西部学生的身高平均值接近。
2、方差分析表
由方差齐性检验表可得显著性概率P为0.640,大于0.05,说明东部、中部和西部三组间的方差在0.05水平上没有显著差异,即方差齐性检验通过,这是能够进行方差分析的必要条件。
3、方差分析表和线性对比
从方差分析表可以知道,F值为12.164,对应的显著性为0.000,小于0.05,所以方差分析结果是显著的,表明东部,中部和西部三组学生身高之间是有显著性差异的,具体那一组或那几组之间有差异,需要看事后两两比较。
对三组学生身高的均值赋予不同的系数,然后进行检验。由于是方差齐性的,所以看三个结果,显著性分别为0.000,0.008和0.030,说明三组系数的均值对比均有显著性差异。
4、事后检验表
可以得到两种检验方法的结果基本一致:东部与中部和东部与西部两组均值对比检验的P值均为0.000,说明两组同学间的平均身高差异显著。
5、子集检验表
将没有显著性的水平进行子集检验,可以得到中部和西部学生身高之间没有显著性差异,但是与东部学生身高有显著性差异。
6、身高均值折线图
身高均值折线图一样也可看出东部地区和中西部差异显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15