
SPSS分析技术:单因素方差分析
接下来将会介绍如何用SPSS做各种类型的方差分析,包括单因素方差分析,多因素方差分析,协方差分析,多元方差分析,重复测量方差分析和方差成分分析等应用原理和案例。
单因素方差分析
单因素方差分析用于分析单个自变量的不同水平是否对因变量产生显著影响。单因素方差分析将总方差分为两部分:可以由自变量解释的系统误差和无法由自变量解释的随机误差,若系统误差显著超过随机误差,则认为该自变量在取不同水平时因变量均值存在显著差异。
方差分析的原理
前面的文章虽然介绍过单因素方差分析的数据分析过程,这里再简单强调一遍。当样本数据可以做这样的归类处理,如下图所示:
首先,单因素方差分析的成对假设是:
原假设:因素的k个水平的均值相等;
备择假设:因素的k个水平的均值不完全相等;注意是不完全相等,而不是k个均值互不相等。
其次,求取组内方差和组间方差;
组间方差的计算公式为:
组内方差的计算公式为:
第三步是计算F统计量的值,以及做出假设检验判断;
上式中MSB和MSE分布称为组间方差和组内方差。在原假设为真的条件下,统计量服从自由度为k-1和k(n-1)的F分布。如果F统计量观测值较小,说明组内方差大,组间方差小,此时不能拒绝原假设;相反,就要拒绝原假设,认为自变量(因素)的k个水平对自变量有显著影响。SPSS会自动计算F统计量的观测值以及相应的概率P值,根据P值就可以完成统计检验。
案例分析
某体育高校对来自全国各地的2016级新生做了一次抽样检查,对抽到学生的身高、体重和胸围作了测量和记录,并将所有参与抽样体检的学生按省份划分为东部、中部和西部,试图分析来自不同地区学生的身高是否有差异。
问题分析
研究的问题是来自全国不同地区学生的身高是否有差异,可以理解为地区因素是否对学生身高有影响,影响因素(自变量)是地区,地区因素有三个水平(东部,中部和西部),所以适用单因素方差分析(单因素,三水平)。
分析步骤
1、选择菜单【分析】-【比较平均值】-【单因素ANOVA】,在【单因素方差分析】中选择变量【身高】,选入因变量列表;选择【地区】,将其选入因子。程序可以同时对多个因变量进行单因素方差分析,但是【因子】只能选取一个自变量。
2、单击【对比】,打开【单因素ANOVA:对比】。该选项是用来做因素不同水平的均值对比的。将多项式选中,在度中可以选择线性、二次项到五次项,表示可以利用不同的多项式对均值进行对比。我们选中线性,然后再系数中输入-1,0.5,0.5,点击下一页,再输入0.5,-1,0.5,再点击下一页,输入0.5,0.5,-1。表示将东部,中部和西部的均值配上系数进行加减对比。例如第一组系数-1,0.5,0.5,表示-1*东部均值+0.5*中部值+0.5*西部均值。
3、事后多重比较设置
单击【事后多重设置】,打开【单因素ANOVA:事后多重比较】。该对话框包括假定方差齐性和未假定方差齐性的总共18种两两对比方式,具体不同可以点击SPSS的帮助文档。这里我们选择LSD、Tukey和Tamhane’s T2检验。
4、单击【选项】,打开【单因素ANVOA】,选中描述性、方差齐性检验和平均值图。
结果解释
1、描述性统计表。
从描述性统计量表可以看出东部地区学生的平均身高和中西部的差异较大,而中西部学生的身高平均值接近。
2、方差分析表
由方差齐性检验表可得显著性概率P为0.640,大于0.05,说明东部、中部和西部三组间的方差在0.05水平上没有显著差异,即方差齐性检验通过,这是能够进行方差分析的必要条件。
3、方差分析表和线性对比
从方差分析表可以知道,F值为12.164,对应的显著性为0.000,小于0.05,所以方差分析结果是显著的,表明东部,中部和西部三组学生身高之间是有显著性差异的,具体那一组或那几组之间有差异,需要看事后两两比较。
对三组学生身高的均值赋予不同的系数,然后进行检验。由于是方差齐性的,所以看三个结果,显著性分别为0.000,0.008和0.030,说明三组系数的均值对比均有显著性差异。
4、事后检验表
可以得到两种检验方法的结果基本一致:东部与中部和东部与西部两组均值对比检验的P值均为0.000,说明两组同学间的平均身高差异显著。
5、子集检验表
将没有显著性的水平进行子集检验,可以得到中部和西部学生身高之间没有显著性差异,但是与东部学生身高有显著性差异。
6、身高均值折线图
身高均值折线图一样也可看出东部地区和中西部差异显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13