京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:多因素方差分析
下面介绍多因素方差分析。单因素方差分析和多因素方差分析都是针对一个因变量的方差分析方法,单因素方差分析是通过分析单个因素(自变量)的不同水平对应因变量的数据变化来判断该因素是否对因变量有影响;多因素方差分析则包含两个以上的因素(自变量),不仅需要考虑每个因素单独对因变量的影响,还需要考虑因素之间交互作用以后对因变量的影响。下面两个表格是单因素方差分析和两因素方差分析的数据整理表格。
多因素方差分析原理
我们以两因素方差分析为例,介绍多因素方差分析原理。 假设因变量可能受两个因素(自变量)A和B的影响,其中因素A有p个水平,因素B有q个水平,则两个因素的交叉将因变量数据分成了P×Q个水平,如下图所示。
分析A和B两个因素对于因变量的影响,仍然是从因变量的样本方差开始,样本的总方差SST可以分解为:
SSA代表因素A引起的因变量数据变化的方差;SSB代表因素B引起的方差;SSAB表示因素A和因素B交互作用引起的方差;SSE代表随机误差。假如因素A的水平发生变化,比如从水平1变化到水平2,无论因素B取那个水平,因变量观测值都要同时增加或同时减小,则表示因素A的变化就可以决定观测值的变化,此时称A和B没有交互作用;如果因素A从水平1变化到水平2,因变量观测值在B的不同水平上变化方向不同,在有些水平上增加,有些水平上减小,也就是需要A和B交叉的水平才能确定因变量的变化,此时称因素A和B存在交互作用。
分析步骤
1、提出成对假设;原假设是多因素方差分析原假设为各因素的各个水平下,因变量的均值没有显著性差异;备择假设是各因素的各个水平下,因变量的均值不完全相同。
2、构造F统计量;构造3个不同的F统计量:
3、计算F值及p值,做出判断;SPSS会自动计算各统计量观测值和对应的概率p值,并以表格方式输出。根据P值,进行统计检验。如果P值大于显著水平,则不能拒绝原假设,认为因素水平上没有显著差异;如果P值小于显著水平,则拒绝原假设,认为有显著差异。
案例分析
2016年的考研人数创造了历史新高,其中一个重要原因是人们普遍认为学历与薪资收入成正比。现有一份社会调查数据,采集了470名公司员工的学历、工资和工作年限等7项信息。用多因素方差分析方法分析性别和学历对他们的薪资是否有显著影响。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择【分析】-【一般线性模型】-【单变量】,如下图所示,在跳出对话框中将工资选入因变量框,将学历和性别选入固定因子框。
2、概要图设置;点击绘图按钮,将学历选为水平轴,性别选入单图,点击添加。
3、点击【选项】按钮,按下图所示操作,其它保持系统默认设置,点击输出结果。
结果分析
1、主体间因子列表。
主体因子列表显示共有教育年限和性别两个因子,分别包含三个水平和两个水平,数字表示因子各水平对应的样本个案数。
2、方差齐性检验结果;
方差齐性检验结果显著性p等于0.000,小于0.05,说明方差齐性检验未通过,因此事后多重比较表也不具参考价值。
3、主体间效应检验表
修正的模型对应的p值为0.000,小于0.05,达到显著水平,说明学历和性别两个因素中至少有一个对当前工资的影响是显著的;学历的主效应F值为.226.372,P=0.000,达到非常显著的水平,说明学历对当前工资影响很大;性别对应的p值为0.022,小于0.05,说明性别对当前工资的影响也是显著的;学历*性别的交互效应p值为0.111,大于显著水平0.05,说明学历和性别交互作用后对当前工资的影响不显著。
4、概要图
由图可知,当前工资的均值在男女性别的两个水平上都随着教育年限的增加呈上升趋势。两条线有交叉,说明教育年限和性别有交互效应,但是从主体间效应检验表可知,交互效应没有达到显著性程度。
综合结论:数据分析结果显示学历对工资收入有显著性影响,这也证明考研人数屡创新高有其合理性存在。性别对收入也有显著影响,只是影响程度不及学历因素,说明社会发展到现在,职场对女性的歧视正在逐步降低,但是并未完全消失,仍需社会各方的努力。性别与学历交互后对工资收入没有显著影响,说明两者之间不存在明显的交互作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15