京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:方差成分分析
方差成分分析原理
方差成分分析用于计算方差成分,它可以将总方差精细地分解到不同变量上。方差成分分析能够考查每个变量所占总方差的比例大小,以及几个交互变量对总方差的贡献,为如何减小数据方差提供依据的统计方法。通过计算方差成分能够确定减小方差时的重点关注对象,但方差成分分析只是一个预处理过程,其本身功能有限,只能进行初步分析,为进一步处理提供线索。
案例分析
某保险公司年终整理购买某款养老保险的客户资料,最后整理得到的客户资料有3110份,每名客户收集的信息包括投保金额、年龄、性别、收入水平、教育程度、婚姻状况等,通过方差成分分析,看年龄、教育程度、婚姻状况对购买保险金额的影响程度如何。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
操作步骤
1、选择菜单【分析】-【一般线性模型】-【方差分量估计】,打开方差成分对话框,将教育水平和婚姻状况两个分类变量选入固定因子;将年龄分布分类变量选入随机变量;将收入类型选为协变量。
PS:若在试验中考虑分类变量的全部水平,则该变量称为固定因子;若在试验中仅随机选择了分类变量的部分水平,则该变量称为随机因素。因为收入水平对于投保金额有强相关性,所以需要剔除,才能考察其它因子对于投保金额的影响。
2、点击模型按钮,将在模型中包含截距取消。方差成分分析不考虑拟合截距。
3、点击选项按钮,选择最大似然方法。ANOVA和MINQUE不需要正态假设,它们对正态假设的湿度偏差来说是稳健的。最大似然和约束最大似然要求模型参数和偏差项服从正态分布。本案例中选择最大似然。对于每种方法的解释,可以点击帮助选项查看。
4、点击确定,输出结果。
结果解释
由上表可知:年龄组的方差最大,为5.609,说明它对投保金额的影响最大;年龄组*教育交互效应方差估算值为0.811,表明该交互效应对因变量影响较小;而其余两组交互效应方差估计算值为0.000,表明两组无交互作用。
渐进协方差矩阵中依然是年龄组的均方最大,进一步表明了年龄组对投保金额的需要效应最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15