京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
在数据处理过程中,经常会遇到多个表进行拼接合并的需求,在Pandas中有多个拼接合并的方法,每种方法都有自己擅长的拼接方式,本文对pd.concat()进行详细讲解,希望对你有帮助。pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起,这一点和另一个常用的pd.merge()函数不同,pd.merge()解决数据库样式的左右拼接,不能解决上下拼接。
pd.concat( objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
#构建需要的数据表
import pandas as pd
df1 = pd.DataFrame({'A':['A{}'.format(i) for i in range(0,4)], 'B':['B{}'.format(i) for i in range(0,4)], 'C':['C{}'.format(i) for i in range(0,4)]
})
df2 = pd.DataFrame({'A':['A{}'.format(i) for i in range(4,8)], 'B':['B{}'.format(i) for i in range(4,8)], 'C':['C{}'.format(i) for i in range(4,8)]
})
df3 = pd.DataFrame({'A':['A{}'.format(i) for i in range(8,12)], 'B':['B{}'.format(i) for i in range(8,12)], 'C':['C{}'.format(i) for i in range(8,12)]
})
现将表构成list,然后在作为concat的输入
frames = [df1, df2, df3] result = pd.concat(frames) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
传入也可以是字典
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11 三、横向拼接
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并
#再构建一个表
df4 = pd.DataFrame({'C':['C{}'.format(i) for i in range(3,9)], 'E':['E{}'.format(i) for i in range(3,9)], 'F':['F{}'.format(i) for i in range(3,9)]
})
pd.concat([df1,df4], axis=1)
A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8
加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。
# join='inner' 取交集 pd.concat([df1, df4], axis=1, join='inner') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 # join='outer' 和 默认值相同 pd.concat([df1, df4], axis=1, join='outer') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 四、对比append方法
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
df1.append(df2) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 五、忽略index
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
pd.concat([df1, df4], axis=1, ignore_index=True) 0 1 2 3 4 5 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 六、增加区分组键
前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源
pd.concat([df1,df2,df3], keys=['x', 'y', 'z']) A B C x 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 y 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 z 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
七、加入新的行
append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
df1.append(s2, ignore_index=True)
A B C D 0 A0 B0 C0 NaN 1 A1 B1 C1 NaN 2 A2 B2 C2 NaN 3 A3 B3 C3 NaN 4 X0 X1 X2 X3
如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。
dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4}, {'A': 5, 'B': 6, 'C': 7, 'Y': 8}] df1.append(dicts, ignore_index=True) A B C X Y 0 A0 B0 C0 NaN NaN 1 A1 B1 C1 NaN NaN 2 A2 B2 C2 NaN NaN 3 A3 B3 C3 NaN NaN 4 1 2 3 4.0 NaN 5 5 6 7 NaN 8.0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17