京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编打算来讲一讲数据分析方面的内容,整理和总结一下Pandas在数据预处理和数据分析方面的硬核干货,我们大致会说
首先我们来讲一下Pandas模块当中的crosstab()函数,它的作用主要是进行分组之后的信息统计,里面会用到聚合函数,默认的是统计行列组合出现的次数,参数如下
pandas.crosstab(index, columns, values=None,
rownames=None,
colnames=None,
aggfunc=None,
margins=False,
margins_name='All',
dropna=True,
normalize=False)
下面小编来解释一下里面几个常用的函数
我们通过几个例子来进一步理解corss_tab()函数的作用,我们先导入要用到的模块并且读取数据集
import pandas as pd df = pd.read_excel( io="supermarkt_sales.xlsx", engine="openpyxl", sheet_name="Sales", skiprows=3, usecols="B:R", nrows=1000, )
output
我们先简单来看几个corsstab()函数的例子,代码如下
pd.crosstab(df['城市'], df['顾客类型'])
output
顾客类型 会员 普通 省份 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36 .......
这里我们将省份指定为行索引,将会员类型指定为列,其中顾客类型有“会员”、“普通”两种,举例来说,四川省的会员顾客有26名,普通顾客有35名。
当然我们这里只是指定了一个列,也可以指定多个,代码如下
pd.crosstab(df['省份'], [df['顾客类型'], df["性别"]])
output
顾客类型 会员 普通 性别 女性 男性 女性 男性 省份 上海 67 57 53 62 北京 53 63 59 68 四川 17 9 16 19 安徽 17 11 9 3 广东 18 12 15 21 .....
这里我们将顾客类型进行了细分,有女性会员、男性会员等等,那么同理,对于行索引我们也可以指定多个,这里也就不过多进行演示。
有时候我们想要改变行索引的名称或者是列方向的名称,我们则可以这么做
pd.crosstab(df['省份'], df['顾客类型'],
colnames = ['顾客的类型'],
rownames = ['各省份名称'])
output
顾客的类型 会员 普通 各省份名称 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36
要是我们想在行方向以及列方向上加一个汇总的列,就需要用到crosstab()方法当中的margin参数,如下
pd.crosstab(df['省份'], df['顾客类型'], margins = True)
output
顾客类型 会员 普通 All 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 All 501 499 1000
你也可以给汇总的那一列重命名,用到的是margins_name参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
margins = True, margins_name="汇总")
output
顾客类型 会员 普通 汇总 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 汇总 501 499 1000
而如果我们需要的数值是百分比的形式,那么就需要用到normalize参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True)
output
顾客类型 会员 普通
省份
上海 0.124 0.115 北京 0.116 0.127 四川 0.026 0.035 安徽 0.028 0.012 广东 0.030 0.036 .......
要是我们更加倾向于是百分比,并且保留两位小数,则可以这么来做
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True).style.format('{:.2%}')
output
顾客类型 会员 普通 省份 上海 12.4% 11.5% 北京 11.6% 12.7% 四川 26% 35% 安徽 28% 12% 广东 30% 36% .......
下面我们指定聚合函数,并且作用在我们指定的列上面,用到的参数是aggfunc参数以及values参数,代码如下
pd.crosstab(df['省份'], df['顾客类型'],
values = df["总收入"],
aggfunc = "mean")
output
顾客类型 会员 普通
省份
上海 15.648738 15.253248 北京 14.771259 14.354390 四川 20.456135 14.019029 安徽 10.175893 11.559917 广东 14.757083 18.331903 .......
如上所示,我们所要计算的是地处“上海”并且是“会员”顾客的总收入的平均值,除了平均值之外,还有其他的聚合函数,如np.sum加总或者是np.median求取平均值。
我们还可以指定保留若干位的小数,使用round()函数
df_1 = pd.crosstab(df['省份'], df['顾客类型'],
values=df["总收入"],
aggfunc="mean").round(2)
output
顾客类型 会员 普通
省份
上海 15.65 15.25 北京 14.77 14.35 四川 20.46 14.02 安徽 10.18 11.56 广东 14.76 18.33 .......
对于很多数据分析师而言,在进行数据预处理的时候,需要将不同类型的数据转换成时间格式的数据,我们来看一下具体是怎么来进行
首先是将整形的时间戳数据转换成时间类型,看下面的例子
df = pd.DataFrame({'date': [1470195805, 1480195805, 1490195805], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='s')
output
0 2016-08-03 03:43:25 1 2016-11-26 21:30:05 2 2017-03-22 15:16:45 Name: date, dtype: datetime64[ns]
上面的例子是精确到秒,我们也可以精确到天,代码如下
df = pd.DataFrame({'date': [1470, 1480, 1490], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='D')
output
0 1974-01-10 1 1974-01-20 2 1974-01-30 Name: date, dtype: datetime64[ns]
下面则是将字符串转换成时间类型的数据,调用的也是pd.to_datetime()方法
pd.to_datetime('2022/01/20', format='%Y/%m/%d')
output
Timestamp('2022-01-20 00:00:00')
亦或是
pd.to_datetime('2022/01/12 11:20:10',
format='%Y/%m/%d %H:%M:%S')
output
Timestamp('2022-01-12 11:20:10')
这里着重介绍一下Python当中的时间日期格式化符号
当然我们进行数据类型转换遇到错误的时候,pd.to_datetime()方法当中的errors参数就可以派上用场,
df = pd.DataFrame({'date': ['3/10/2000', 'a/11/2000', '3/12/2000'], 'value': [2, 3, 4]}) # 会报解析错误 df['date'] = pd.to_datetime(df['date'])
output
我们来看一下errors参数的作用,代码如下
df['date'] = pd.to_datetime(df['date'], errors='ignore')
df
output
date value 0 3/10/2000 2 1 a/11/2000 3 2 3/12/2000 4
或者将不准确的值转换成NaT,代码如下
df['date'] = pd.to_datetime(df['date'], errors='coerce')
df
output
date value 0 2000-03-10 2 1 NaT 3 2 2000-03-12 4
接下来我们来看一下其他数据类型往数值类型转换所需要经过的步骤,首先我们先创建一个DataFrame数据集,如下
df = pd.DataFrame({ 'string_col': ['1','2','3','4'], 'int_col': [1,2,3,4], 'float_col': [1.1,1.2,1.3,4.7], 'mix_col': ['a', 2, 3, 4], 'missing_col': [1.0, 2, 3, np.nan], 'money_col': ['£1,000.00','£2,400.00','£2,400.00','£2,400.00'], 'boolean_col': [True, False, True, True], 'custom': ['Y', 'Y', 'N', 'N']
})
output
我们先来查看一下每一列的数据类型
df.dtypes
output
string_col object int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
可以看到有各种类型的数据,包括了布尔值、字符串等等,或者我们可以调用df.info()方法来调用,如下
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4 entries, 0 to 3 Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 string_col 4 non-null object 1 int_col 4 non-null int64 2 float_col 4 non-null float64 3 mix_col 4 non-null object 4 missing_col 3 non-null float64 5 money_col 4 non-null object 6 boolean_col 4 non-null bool 7 custom 4 non-null object dtypes: bool(1), float64(2), int64(1), object(4)
memory usage: 356.0+ bytes
我们先来看一下从字符串到整型数据的转换,代码如下
df['string_col'] = df['string_col'].astype('int')
df.dtypes
output
string_col int32 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
看到数据是被转换成了int32类型,当然我们指定例如astype('int16')、astype('int8')或者是astype('int64'),当我们碰到量级很大的数据集时,会特别的有帮助。
那么类似的,我们想要转换成浮点类型的数据,就可以这么来做
df['string_col'] = df['string_col'].astype('float')
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
同理我们也可以指定转换成astype('float16')、astype('float32')或者是astype('float128')
而如果数据类型的混合的,既有整型又有字符串的,正常来操作就会报错,如下
df['mix_col'] = df['mix_col'].astype('int')
output
当中有一个字符串的数据"a",这个时候我们可以调用pd.to_numeric()方法以及里面的errors参数,代码如下
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce')
df.head()
output
我们来看一下各列的数据类型
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col float64 missing_col float64 money_col object boolean_col bool custom object dtype: object
"mix_col"这一列的数据类型被转换成了float64类型,要是我们想指定转换成我们想要的类型,例如
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce').astype('Int64')
df['mix_col'].dtypes
output
Int64Dtype()
而对于"money_col"这一列,在字符串面前有一个货币符号,并且还有一系列的标签符号,我们先调用replace()方法将这些符号给替换掉,然后再进行数据类型的转换
df['money_replace'] = df['money_col'].str.replace('£', '').str.replace(',','')
df['money_replace'] = pd.to_numeric(df['money_replace'])
df['money_replace']
output
0 1000.0 1 2400.0 2 2400.0 3 2400.0 Name: money_replace, dtype: float64
要是你熟悉正则表达式的话,也可以通过正则表达式的方式来操作,通过调用regex=True的参数,代码如下
df['money_regex'] = df['money_col'].str.replace('[£,]', '', regex=True)
df['money_regex'] = pd.to_numeric(df['money_regex'])
df['money_regex']
另外我们也可以通过astype()方法,对多个列一步到位进行数据类型的转换,代码如下
df = df.astype({ 'string_col': 'float16', 'int_col': 'float16' })
或者在第一步数据读取的时候就率先确定好数据类型,代码如下
df = pd.read_csv( 'dataset.csv',
dtype={ 'string_col': 'float16', 'int_col': 'float16' }
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03