京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编打算来讲一讲数据分析方面的内容,整理和总结一下Pandas在数据预处理和数据分析方面的硬核干货,我们大致会说
首先我们来讲一下Pandas模块当中的crosstab()函数,它的作用主要是进行分组之后的信息统计,里面会用到聚合函数,默认的是统计行列组合出现的次数,参数如下
pandas.crosstab(index, columns, values=None,
rownames=None,
colnames=None,
aggfunc=None,
margins=False,
margins_name='All',
dropna=True,
normalize=False)
下面小编来解释一下里面几个常用的函数
我们通过几个例子来进一步理解corss_tab()函数的作用,我们先导入要用到的模块并且读取数据集
import pandas as pd df = pd.read_excel( io="supermarkt_sales.xlsx", engine="openpyxl", sheet_name="Sales", skiprows=3, usecols="B:R", nrows=1000, )
output
我们先简单来看几个corsstab()函数的例子,代码如下
pd.crosstab(df['城市'], df['顾客类型'])
output
顾客类型 会员 普通 省份 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36 .......
这里我们将省份指定为行索引,将会员类型指定为列,其中顾客类型有“会员”、“普通”两种,举例来说,四川省的会员顾客有26名,普通顾客有35名。
当然我们这里只是指定了一个列,也可以指定多个,代码如下
pd.crosstab(df['省份'], [df['顾客类型'], df["性别"]])
output
顾客类型 会员 普通 性别 女性 男性 女性 男性 省份 上海 67 57 53 62 北京 53 63 59 68 四川 17 9 16 19 安徽 17 11 9 3 广东 18 12 15 21 .....
这里我们将顾客类型进行了细分,有女性会员、男性会员等等,那么同理,对于行索引我们也可以指定多个,这里也就不过多进行演示。
有时候我们想要改变行索引的名称或者是列方向的名称,我们则可以这么做
pd.crosstab(df['省份'], df['顾客类型'],
colnames = ['顾客的类型'],
rownames = ['各省份名称'])
output
顾客的类型 会员 普通 各省份名称 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36
要是我们想在行方向以及列方向上加一个汇总的列,就需要用到crosstab()方法当中的margin参数,如下
pd.crosstab(df['省份'], df['顾客类型'], margins = True)
output
顾客类型 会员 普通 All 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 All 501 499 1000
你也可以给汇总的那一列重命名,用到的是margins_name参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
margins = True, margins_name="汇总")
output
顾客类型 会员 普通 汇总 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 汇总 501 499 1000
而如果我们需要的数值是百分比的形式,那么就需要用到normalize参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True)
output
顾客类型 会员 普通
省份
上海 0.124 0.115 北京 0.116 0.127 四川 0.026 0.035 安徽 0.028 0.012 广东 0.030 0.036 .......
要是我们更加倾向于是百分比,并且保留两位小数,则可以这么来做
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True).style.format('{:.2%}')
output
顾客类型 会员 普通 省份 上海 12.4% 11.5% 北京 11.6% 12.7% 四川 26% 35% 安徽 28% 12% 广东 30% 36% .......
下面我们指定聚合函数,并且作用在我们指定的列上面,用到的参数是aggfunc参数以及values参数,代码如下
pd.crosstab(df['省份'], df['顾客类型'],
values = df["总收入"],
aggfunc = "mean")
output
顾客类型 会员 普通
省份
上海 15.648738 15.253248 北京 14.771259 14.354390 四川 20.456135 14.019029 安徽 10.175893 11.559917 广东 14.757083 18.331903 .......
如上所示,我们所要计算的是地处“上海”并且是“会员”顾客的总收入的平均值,除了平均值之外,还有其他的聚合函数,如np.sum加总或者是np.median求取平均值。
我们还可以指定保留若干位的小数,使用round()函数
df_1 = pd.crosstab(df['省份'], df['顾客类型'],
values=df["总收入"],
aggfunc="mean").round(2)
output
顾客类型 会员 普通
省份
上海 15.65 15.25 北京 14.77 14.35 四川 20.46 14.02 安徽 10.18 11.56 广东 14.76 18.33 .......
对于很多数据分析师而言,在进行数据预处理的时候,需要将不同类型的数据转换成时间格式的数据,我们来看一下具体是怎么来进行
首先是将整形的时间戳数据转换成时间类型,看下面的例子
df = pd.DataFrame({'date': [1470195805, 1480195805, 1490195805], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='s')
output
0 2016-08-03 03:43:25 1 2016-11-26 21:30:05 2 2017-03-22 15:16:45 Name: date, dtype: datetime64[ns]
上面的例子是精确到秒,我们也可以精确到天,代码如下
df = pd.DataFrame({'date': [1470, 1480, 1490], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='D')
output
0 1974-01-10 1 1974-01-20 2 1974-01-30 Name: date, dtype: datetime64[ns]
下面则是将字符串转换成时间类型的数据,调用的也是pd.to_datetime()方法
pd.to_datetime('2022/01/20', format='%Y/%m/%d')
output
Timestamp('2022-01-20 00:00:00')
亦或是
pd.to_datetime('2022/01/12 11:20:10',
format='%Y/%m/%d %H:%M:%S')
output
Timestamp('2022-01-12 11:20:10')
这里着重介绍一下Python当中的时间日期格式化符号
当然我们进行数据类型转换遇到错误的时候,pd.to_datetime()方法当中的errors参数就可以派上用场,
df = pd.DataFrame({'date': ['3/10/2000', 'a/11/2000', '3/12/2000'], 'value': [2, 3, 4]}) # 会报解析错误 df['date'] = pd.to_datetime(df['date'])
output
我们来看一下errors参数的作用,代码如下
df['date'] = pd.to_datetime(df['date'], errors='ignore')
df
output
date value 0 3/10/2000 2 1 a/11/2000 3 2 3/12/2000 4
或者将不准确的值转换成NaT,代码如下
df['date'] = pd.to_datetime(df['date'], errors='coerce')
df
output
date value 0 2000-03-10 2 1 NaT 3 2 2000-03-12 4
接下来我们来看一下其他数据类型往数值类型转换所需要经过的步骤,首先我们先创建一个DataFrame数据集,如下
df = pd.DataFrame({ 'string_col': ['1','2','3','4'], 'int_col': [1,2,3,4], 'float_col': [1.1,1.2,1.3,4.7], 'mix_col': ['a', 2, 3, 4], 'missing_col': [1.0, 2, 3, np.nan], 'money_col': ['£1,000.00','£2,400.00','£2,400.00','£2,400.00'], 'boolean_col': [True, False, True, True], 'custom': ['Y', 'Y', 'N', 'N']
})
output
我们先来查看一下每一列的数据类型
df.dtypes
output
string_col object int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
可以看到有各种类型的数据,包括了布尔值、字符串等等,或者我们可以调用df.info()方法来调用,如下
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4 entries, 0 to 3 Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 string_col 4 non-null object 1 int_col 4 non-null int64 2 float_col 4 non-null float64 3 mix_col 4 non-null object 4 missing_col 3 non-null float64 5 money_col 4 non-null object 6 boolean_col 4 non-null bool 7 custom 4 non-null object dtypes: bool(1), float64(2), int64(1), object(4)
memory usage: 356.0+ bytes
我们先来看一下从字符串到整型数据的转换,代码如下
df['string_col'] = df['string_col'].astype('int')
df.dtypes
output
string_col int32 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
看到数据是被转换成了int32类型,当然我们指定例如astype('int16')、astype('int8')或者是astype('int64'),当我们碰到量级很大的数据集时,会特别的有帮助。
那么类似的,我们想要转换成浮点类型的数据,就可以这么来做
df['string_col'] = df['string_col'].astype('float')
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
同理我们也可以指定转换成astype('float16')、astype('float32')或者是astype('float128')
而如果数据类型的混合的,既有整型又有字符串的,正常来操作就会报错,如下
df['mix_col'] = df['mix_col'].astype('int')
output
当中有一个字符串的数据"a",这个时候我们可以调用pd.to_numeric()方法以及里面的errors参数,代码如下
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce')
df.head()
output
我们来看一下各列的数据类型
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col float64 missing_col float64 money_col object boolean_col bool custom object dtype: object
"mix_col"这一列的数据类型被转换成了float64类型,要是我们想指定转换成我们想要的类型,例如
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce').astype('Int64')
df['mix_col'].dtypes
output
Int64Dtype()
而对于"money_col"这一列,在字符串面前有一个货币符号,并且还有一系列的标签符号,我们先调用replace()方法将这些符号给替换掉,然后再进行数据类型的转换
df['money_replace'] = df['money_col'].str.replace('£', '').str.replace(',','')
df['money_replace'] = pd.to_numeric(df['money_replace'])
df['money_replace']
output
0 1000.0 1 2400.0 2 2400.0 3 2400.0 Name: money_replace, dtype: float64
要是你熟悉正则表达式的话,也可以通过正则表达式的方式来操作,通过调用regex=True的参数,代码如下
df['money_regex'] = df['money_col'].str.replace('[£,]', '', regex=True)
df['money_regex'] = pd.to_numeric(df['money_regex'])
df['money_regex']
另外我们也可以通过astype()方法,对多个列一步到位进行数据类型的转换,代码如下
df = df.astype({ 'string_col': 'float16', 'int_col': 'float16' })
或者在第一步数据读取的时候就率先确定好数据类型,代码如下
df = pd.read_csv( 'dataset.csv',
dtype={ 'string_col': 'float16', 'int_col': 'float16' }
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23