
作者:俊欣
来源:关于数据分析与可视化
今天小编打算来讲一讲数据分析方面的内容,整理和总结一下Pandas在数据预处理和数据分析方面的硬核干货,我们大致会说
首先我们来讲一下Pandas模块当中的crosstab()函数,它的作用主要是进行分组之后的信息统计,里面会用到聚合函数,默认的是统计行列组合出现的次数,参数如下
pandas.crosstab(index, columns, values=None,
rownames=None,
colnames=None,
aggfunc=None,
margins=False,
margins_name='All',
dropna=True,
normalize=False)
下面小编来解释一下里面几个常用的函数
我们通过几个例子来进一步理解corss_tab()函数的作用,我们先导入要用到的模块并且读取数据集
import pandas as pd df = pd.read_excel( io="supermarkt_sales.xlsx", engine="openpyxl", sheet_name="Sales", skiprows=3, usecols="B:R", nrows=1000, )
output
我们先简单来看几个corsstab()函数的例子,代码如下
pd.crosstab(df['城市'], df['顾客类型'])
output
顾客类型 会员 普通 省份 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36 .......
这里我们将省份指定为行索引,将会员类型指定为列,其中顾客类型有“会员”、“普通”两种,举例来说,四川省的会员顾客有26名,普通顾客有35名。
当然我们这里只是指定了一个列,也可以指定多个,代码如下
pd.crosstab(df['省份'], [df['顾客类型'], df["性别"]])
output
顾客类型 会员 普通 性别 女性 男性 女性 男性 省份 上海 67 57 53 62 北京 53 63 59 68 四川 17 9 16 19 安徽 17 11 9 3 广东 18 12 15 21 .....
这里我们将顾客类型进行了细分,有女性会员、男性会员等等,那么同理,对于行索引我们也可以指定多个,这里也就不过多进行演示。
有时候我们想要改变行索引的名称或者是列方向的名称,我们则可以这么做
pd.crosstab(df['省份'], df['顾客类型'],
colnames = ['顾客的类型'],
rownames = ['各省份名称'])
output
顾客的类型 会员 普通 各省份名称 上海 124 115 北京 116 127 四川 26 35 安徽 28 12 广东 30 36
要是我们想在行方向以及列方向上加一个汇总的列,就需要用到crosstab()方法当中的margin参数,如下
pd.crosstab(df['省份'], df['顾客类型'], margins = True)
output
顾客类型 会员 普通 All 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 All 501 499 1000
你也可以给汇总的那一列重命名,用到的是margins_name参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
margins = True, margins_name="汇总")
output
顾客类型 会员 普通 汇总 省份 上海 124 115 239 北京 116 127 243 ..... 江苏 18 15 33 浙江 119 111 230 黑龙江 14 17 31 汇总 501 499 1000
而如果我们需要的数值是百分比的形式,那么就需要用到normalize参数,如下
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True)
output
顾客类型 会员 普通
省份
上海 0.124 0.115 北京 0.116 0.127 四川 0.026 0.035 安徽 0.028 0.012 广东 0.030 0.036 .......
要是我们更加倾向于是百分比,并且保留两位小数,则可以这么来做
pd.crosstab(df['省份'], df['顾客类型'],
normalize=True).style.format('{:.2%}')
output
顾客类型 会员 普通 省份 上海 12.4% 11.5% 北京 11.6% 12.7% 四川 26% 35% 安徽 28% 12% 广东 30% 36% .......
下面我们指定聚合函数,并且作用在我们指定的列上面,用到的参数是aggfunc参数以及values参数,代码如下
pd.crosstab(df['省份'], df['顾客类型'],
values = df["总收入"],
aggfunc = "mean")
output
顾客类型 会员 普通
省份
上海 15.648738 15.253248 北京 14.771259 14.354390 四川 20.456135 14.019029 安徽 10.175893 11.559917 广东 14.757083 18.331903 .......
如上所示,我们所要计算的是地处“上海”并且是“会员”顾客的总收入的平均值,除了平均值之外,还有其他的聚合函数,如np.sum加总或者是np.median求取平均值。
我们还可以指定保留若干位的小数,使用round()函数
df_1 = pd.crosstab(df['省份'], df['顾客类型'],
values=df["总收入"],
aggfunc="mean").round(2)
output
顾客类型 会员 普通
省份
上海 15.65 15.25 北京 14.77 14.35 四川 20.46 14.02 安徽 10.18 11.56 广东 14.76 18.33 .......
对于很多数据分析师而言,在进行数据预处理的时候,需要将不同类型的数据转换成时间格式的数据,我们来看一下具体是怎么来进行
首先是将整形的时间戳数据转换成时间类型,看下面的例子
df = pd.DataFrame({'date': [1470195805, 1480195805, 1490195805], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='s')
output
0 2016-08-03 03:43:25 1 2016-11-26 21:30:05 2 2017-03-22 15:16:45 Name: date, dtype: datetime64[ns]
上面的例子是精确到秒,我们也可以精确到天,代码如下
df = pd.DataFrame({'date': [1470, 1480, 1490], 'value': [2, 3, 4]}) pd.to_datetime(df['date'], unit='D')
output
0 1974-01-10 1 1974-01-20 2 1974-01-30 Name: date, dtype: datetime64[ns]
下面则是将字符串转换成时间类型的数据,调用的也是pd.to_datetime()方法
pd.to_datetime('2022/01/20', format='%Y/%m/%d')
output
Timestamp('2022-01-20 00:00:00')
亦或是
pd.to_datetime('2022/01/12 11:20:10',
format='%Y/%m/%d %H:%M:%S')
output
Timestamp('2022-01-12 11:20:10')
这里着重介绍一下Python当中的时间日期格式化符号
当然我们进行数据类型转换遇到错误的时候,pd.to_datetime()方法当中的errors参数就可以派上用场,
df = pd.DataFrame({'date': ['3/10/2000', 'a/11/2000', '3/12/2000'], 'value': [2, 3, 4]}) # 会报解析错误 df['date'] = pd.to_datetime(df['date'])
output
我们来看一下errors参数的作用,代码如下
df['date'] = pd.to_datetime(df['date'], errors='ignore')
df
output
date value 0 3/10/2000 2 1 a/11/2000 3 2 3/12/2000 4
或者将不准确的值转换成NaT,代码如下
df['date'] = pd.to_datetime(df['date'], errors='coerce')
df
output
date value 0 2000-03-10 2 1 NaT 3 2 2000-03-12 4
接下来我们来看一下其他数据类型往数值类型转换所需要经过的步骤,首先我们先创建一个DataFrame数据集,如下
df = pd.DataFrame({ 'string_col': ['1','2','3','4'], 'int_col': [1,2,3,4], 'float_col': [1.1,1.2,1.3,4.7], 'mix_col': ['a', 2, 3, 4], 'missing_col': [1.0, 2, 3, np.nan], 'money_col': ['£1,000.00','£2,400.00','£2,400.00','£2,400.00'], 'boolean_col': [True, False, True, True], 'custom': ['Y', 'Y', 'N', 'N']
})
output
我们先来查看一下每一列的数据类型
df.dtypes
output
string_col object int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
可以看到有各种类型的数据,包括了布尔值、字符串等等,或者我们可以调用df.info()方法来调用,如下
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4 entries, 0 to 3 Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 string_col 4 non-null object 1 int_col 4 non-null int64 2 float_col 4 non-null float64 3 mix_col 4 non-null object 4 missing_col 3 non-null float64 5 money_col 4 non-null object 6 boolean_col 4 non-null bool 7 custom 4 non-null object dtypes: bool(1), float64(2), int64(1), object(4)
memory usage: 356.0+ bytes
我们先来看一下从字符串到整型数据的转换,代码如下
df['string_col'] = df['string_col'].astype('int')
df.dtypes
output
string_col int32 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
看到数据是被转换成了int32类型,当然我们指定例如astype('int16')、astype('int8')或者是astype('int64'),当我们碰到量级很大的数据集时,会特别的有帮助。
那么类似的,我们想要转换成浮点类型的数据,就可以这么来做
df['string_col'] = df['string_col'].astype('float')
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object
同理我们也可以指定转换成astype('float16')、astype('float32')或者是astype('float128')
而如果数据类型的混合的,既有整型又有字符串的,正常来操作就会报错,如下
df['mix_col'] = df['mix_col'].astype('int')
output
当中有一个字符串的数据"a",这个时候我们可以调用pd.to_numeric()方法以及里面的errors参数,代码如下
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce')
df.head()
output
我们来看一下各列的数据类型
df.dtypes
output
string_col float64 int_col int64 float_col float64 mix_col float64 missing_col float64 money_col object boolean_col bool custom object dtype: object
"mix_col"这一列的数据类型被转换成了float64类型,要是我们想指定转换成我们想要的类型,例如
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce').astype('Int64')
df['mix_col'].dtypes
output
Int64Dtype()
而对于"money_col"这一列,在字符串面前有一个货币符号,并且还有一系列的标签符号,我们先调用replace()方法将这些符号给替换掉,然后再进行数据类型的转换
df['money_replace'] = df['money_col'].str.replace('£', '').str.replace(',','')
df['money_replace'] = pd.to_numeric(df['money_replace'])
df['money_replace']
output
0 1000.0 1 2400.0 2 2400.0 3 2400.0 Name: money_replace, dtype: float64
要是你熟悉正则表达式的话,也可以通过正则表达式的方式来操作,通过调用regex=True的参数,代码如下
df['money_regex'] = df['money_col'].str.replace('[£,]', '', regex=True)
df['money_regex'] = pd.to_numeric(df['money_regex'])
df['money_regex']
另外我们也可以通过astype()方法,对多个列一步到位进行数据类型的转换,代码如下
df = df.astype({ 'string_col': 'float16', 'int_col': 'float16' })
或者在第一步数据读取的时候就率先确定好数据类型,代码如下
df = pd.read_csv( 'dataset.csv',
dtype={ 'string_col': 'float16', 'int_col': 'float16' }
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05