CDA数据分析师 出品
作者:Frank Andrade
编译:Mika
作为一名数据工作者,我特别喜欢用Python创建美观且易懂的可视化图表,而且技术难度小,不会花费大量时间。
交互式可视化也是如此,因此我花了很长时间寻找Python中好用的库。能创建交互式可视化图表的库有很多,但当使用Pandas时,很容易遇到各种各样的问题。
今天,我就来手把手教你如何直接使用Pandas创建出交互式可视化效果。
为了轻松创建交互式可视化,我们需要安装Cufflinks。这是一个将Pandas与Plotly连接起来的库,从而我们能够直接从Pandas创建可视化效果。
首先,确保安装Pandas并在终端上运行以下命令:
pip install pandas
pip install plotly
注意,你也可以使用conda安装Plotly
conda install -c plotly
安装 Plotly 后,运行以下命令安装 Cufflinks:
pip install cufflinks
接下来要导入以下库:
import pandas as pd
import cufflinks as cf
from IPython.display import display,HTMLcf.set_config_file(sharing='public',theme='ggplot',offline=True)
在这里,我用的是 ‘ggplot’ 主题,你也可以随意选择任何想要的主题。运行命令 cf.getThemes() 以获取所有可用的主题。
要在以下部分中使用 Pandas 进行交互式可视化,我们只需要使用语法 dataframe.iplot()
在本文中,我们将使用人口数据框。
“CDA数据分析师”公众号后台回复关键字 “人口” ,
即可下载数据CSV 文件。
下载文件后,移动到 Python 脚本所在的位置,然后在 Pandas 数据框中进行读取,如下所示。
df_population = pd.read_csv('population_total.csv')
数据框中包含了世界上大多数国家多年来的人口数据,如下所示:
在使用之前,我们需要对其进行处理,删除空值,重新调整,然后选择几个国家来测试交互式绘图。
代码如下:
# dropping null values
df_population = df_population.dropna()# reshaping the dataframe
df_population = df_population.pivot(index='year', columns='country',
values='population')# selecting 5 countries
df_population = df_population[['United States', 'India', 'China',
'Indonesia', 'Brazil']]
现在数据框如下图所示,可以进行绘图了。
下面让我们做一个折线图来,对其中5 个国家在 1955 年到 2020 年的人口增长量进行对比。
如前所述,我们将使用语法 df_population.iplot(kind=‘name_of_plot’) 来进行绘制。如下所示:
df_population.iplot(kind='line',xTitle='Years', yTitle='Population',
title='Population (1955-2020)')
一眼就可以看到,印度的人口增长速度比其他国家快。
单条形图
让我们创建一个条形图,显示2020年前每个国家的人口。
首先,我们从索引中选择2020年,然后将行与列转换,以获得列中的年份。将这个新的数据框命名为 df_population_2020 。我们将在绘制饼图时将再次使用这个数据框。
df_population_2020 = df_population[df_population.index.isin([2020])]
df_population_2020 = df_population_2020.T
现在我们可以用 .iplot() 来对新数据框进行绘制. 在这种情况下,我将使用颜色参数将条形颜色设置为浅绿色。
df_population_2020.iplot(kind='bar', color='lightgreen',
xTitle='Years', yTitle='Population',
title='Population in 2020')
多个变量分组的条形图
现在让我们看看不同年代初期人口的变化情况。
# filter years out
df_population_sample = df_population[df_population.index.isin([1980, 1990, 2000, 2010, 2020])]# plotting
df_population_sample.iplot(kind='bar', xTitle='Years',
yTitle='Population')
多年来,这些国家的人口都在增长,但有些国家的增长速度更快。
箱形图
当我们想查看数据的分布时,箱线图就派上用场了。箱线图将显示最小值、第一四分位数 (Q1)、中位数、第三个四分位数 (Q3)以及 最大值。查看这些值的最简单方法是创建交互式可视化。
接着让我们看到美国的人口分布。
df_population['United States'].iplot(kind='box', color='green',
yTitle='Population')
我们还可以看到其他国家或地区的人口分布。
df_population.iplot(kind='box', xTitle='Countries',
yTitle='Population')
如我们所见,我们还可以通过点击右侧的图例来过滤掉任何国家。
直方图表示数值数据的分布。让我们看看美国和印度尼西亚的人口分布。
df_population[['United States', 'Indonesia']].iplot(kind='hist',
xTitle='Population')
饼图
让我们用饼图来比较一下 2020 年的人口。为此,我们将使用在单个条形图部分中创建的数据框 df_population_2020
注意,要制作饼图,我们需要将“国家/地区”作为列而不是索引,因此我们使用 .reset_index() 来获取列。然后我们将其 2020 转换为字符串。
# transforming data
df_population_2020 = df_population_2020.reset_index()
df_population_2020 =df_population_2020.rename(columns={2020:'2020'})# plotting
df_population_2020.iplot(kind='pie', labels='country',
values='2020',
title='Population in 2020 (%)')
其实人口数据不适合用散点图,但出于演示的目的,这里还是列举出来了。
df_population.iplot(kind='scatter', mode='markers')
以上就是本文的全部内容了。不妨下载数据来试试,用Pandas来绘制文中提到的交互式可视化吧!
“CDA数据分析师”公众号后台回复关键字 “人口” ,
即可下载数据CSV 文件。
还想学习哪方面的内容,也欢迎在评论区给我们留言哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03