京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:潘彼得
本文为「心中有数」CDA征文作品
无论是产品经理、产品运营还是数据分析师,在评估一个产品的用户使用情况时肯定离不开留存率、忠诚度等观测指标。这些指标可以反映用户对于产品的粘性、产品用户价值质量的高低,及时了解用户留存、流失趋势,有助于帮助产品做更好的功能迭代,也有助于运营及时进程运营策略的调整,比如:当新用户留存率低的时候,是不是需要调整新用户的活动策略,或者当老用户留存率低的时候,是不是某个产品功能的问题,或者活动对老用户不友好而导致流失等等……
今天,就给大家分享下如何用SQL实现留存率的计算,以及日常工作中如何分析留存率这个指标。
留存顾名思义是指留下来。留存用户是指用户在APP产生行为后,在固定的第N日继续访问或使用APP的用户。留存率是指用户在一段时间后或固定的间隔后产生留存用户的比例。
用户留存率有很多种:新客留存率、老客留存率、活跃用户留存率、购买留存率、或者某个功能使用用户的留存率等,通常计算的时间间隔为次日、3日、7日、30日、60日,根据业务不同需求可以选择不同的计算方式以及时间间隔,重点是要和产品负责人以及运营人员对好指标口径。
本次分享的留存率是关于新客留存率,计算公式:第N日新客留存率=某日的新注册用户在第N日内访问过APP的留存用户数/某日的新注册用户总数。
次日新客留存率(第1日新客留存率):指注册APP后的第二天有访问APP的行为的留存用户/注册APP当天的新客总数。
第3日新客留存率:指注册APP后第3天内内访问过APP的留存用户/注册APP当天的新客户总数。
第7日新客留存率:指注册APP后第7天内访问过APP的留存用户/注册APP当天的新客户总数。
第30日新客留存率:指注册APP后第30内访问过APP的留存用户/注册APP当天的新客户总数。
1. 计算新客留存率用到的字段信息有:用户ID,用户登录日期;
创建一张只有用户ID和用户登录日期的表:
CREATE TABLE IF NOT EXISTS user_log
(
'id' int(11) NOT NULL AUTO_INCREMENT,
'operator_id' STRING COMMENT '登录用户ID',
'create_time' DATETIME COMMENT '创建时间'
PRIMARY KEY (`id`) USING BTREE
)
COMMENT '用户登录表'
2.计算过程:
为便于理解,下面的步骤分为两步讲解:留存时间的计算,留存用户的计算,日常时间中如果觉得两个步骤麻烦可以将两个代码进行合并。
第一步:
计算用户注册APP日期、登录APP日期、登录APP日期距离注册APP日期的天数差
CREATE view IF NOT EXISTS view_retention_rate AS
SELECT t2.operator_id as “用户ID”
,to_date(register_day) as “注册日期”
,login_day as "登录日期"
,datediff(login_day,register_day) AS “登录时间距离注册日期的天数”
FROM (
(
SELECT DISTINCT operator_id
,to_date(create_time) AS login_day
FROM user_log
) t1
LEFT JOIN (
SELECT operator_id
,min(to_date(create_time)) AS register_day --用户访问APP的最小时间即为首次注册时间
FROM user_log
GROUP BY operator_id
) t2
ON t1.operator_id = t2.operator_id
)
;
结果如下:可以发现用户1注册日期在2020年11月10日,最近登录日期在20219月20日,留存达314天。
第二步:
利用已经计算出的时间计算用户留存率。
例如,想要计算用户次日留存率只需在上面的计算结果表找出登录时间距离注册日期的天数=1的数据,想要计算用户7日留存率,只需要在上表找出登录时间距离注册日期<=7的记录,代码如下:
SELECT a.register_day as "注册日期"
,COUNT(DISTINCT a.operator_id) AS "当天新增人总数"
,COUNT(DISTINCT CASE WHEN remain_days=1 THEN a.operator_id ELSE NULL END) AS "次日留存用户数"
,COUNT(DISTINCT CASE WHEN 0
,COUNT(DISTINCT CASE WHEN 7
,COUNT(DISTINCT CASE WHEN 30
,round(COUNT(DISTINCT CASE WHEN remain_days=1 THEN a.operator_id ELSE NULL END)/count(DISTINCT a.operator_id),2) AS "次日留存率"
,round(COUNT(DISTINCT CASE when 0
,round(COUNT(DISTINCT CASE when 7
,round(COUNT(DISTINCT CASE when 30
FROM view_Retention_rate a
GROUP BY a.register_day
;
结果输出如下:
到这里,一个简单的新客留存情况就完成啦!
03、分析留存率为何下降的原因
本次计算的是新客留存率,因此我们要分析的就是新客留存率下降的原因,分析原因可以从几个角度出发:人、产品、运营方式。
新客留存率下降的主要原因有:
……
04、如何提高留存率
想要提高留存率建议“对症下药”,通过留存率分析,找出留存率下降或一直很低的主要原因:产品核心功能不行?运营手段不行?还是没有吸引到目标客户?
针对这几点,给大家一些参考的方式:
……
05、一个好的留存率标准是什么
对于这样一个普遍的指标,不同的模型或业务场景下有不同的标准。前Airbnb 供给侧增长团队负责人 Lenny Rachitsky 和Eventbrite 首席产品官Casey Winters 在对Uber、Evernote、ServeyMonkey、Twitter、Facebook、Notion等20多款产品的增长专家进行了采访后,得出了一些结论。
根据业务类型的不同,各位增长专家认为好的留存率的标准分别如下:
6个月用户留存率标准应该是:
12个月的收入留存率标准应该是:
以上只是一些建议供大家参考,实际业务场景中还需要根据业务需求或业务体量进行合适的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24