京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:潘彼得
本文为「心中有数」CDA征文作品
无论是产品经理、产品运营还是数据分析师,在评估一个产品的用户使用情况时肯定离不开留存率、忠诚度等观测指标。这些指标可以反映用户对于产品的粘性、产品用户价值质量的高低,及时了解用户留存、流失趋势,有助于帮助产品做更好的功能迭代,也有助于运营及时进程运营策略的调整,比如:当新用户留存率低的时候,是不是需要调整新用户的活动策略,或者当老用户留存率低的时候,是不是某个产品功能的问题,或者活动对老用户不友好而导致流失等等……
今天,就给大家分享下如何用SQL实现留存率的计算,以及日常工作中如何分析留存率这个指标。
留存顾名思义是指留下来。留存用户是指用户在APP产生行为后,在固定的第N日继续访问或使用APP的用户。留存率是指用户在一段时间后或固定的间隔后产生留存用户的比例。
用户留存率有很多种:新客留存率、老客留存率、活跃用户留存率、购买留存率、或者某个功能使用用户的留存率等,通常计算的时间间隔为次日、3日、7日、30日、60日,根据业务不同需求可以选择不同的计算方式以及时间间隔,重点是要和产品负责人以及运营人员对好指标口径。
本次分享的留存率是关于新客留存率,计算公式:第N日新客留存率=某日的新注册用户在第N日内访问过APP的留存用户数/某日的新注册用户总数。
次日新客留存率(第1日新客留存率):指注册APP后的第二天有访问APP的行为的留存用户/注册APP当天的新客总数。
第3日新客留存率:指注册APP后第3天内内访问过APP的留存用户/注册APP当天的新客户总数。
第7日新客留存率:指注册APP后第7天内访问过APP的留存用户/注册APP当天的新客户总数。
第30日新客留存率:指注册APP后第30内访问过APP的留存用户/注册APP当天的新客户总数。
1. 计算新客留存率用到的字段信息有:用户ID,用户登录日期;
创建一张只有用户ID和用户登录日期的表:
CREATE TABLE IF NOT EXISTS user_log
(
'id' int(11) NOT NULL AUTO_INCREMENT,
'operator_id' STRING COMMENT '登录用户ID',
'create_time' DATETIME COMMENT '创建时间'
PRIMARY KEY (`id`) USING BTREE
)
COMMENT '用户登录表'
2.计算过程:
为便于理解,下面的步骤分为两步讲解:留存时间的计算,留存用户的计算,日常时间中如果觉得两个步骤麻烦可以将两个代码进行合并。
第一步:
计算用户注册APP日期、登录APP日期、登录APP日期距离注册APP日期的天数差
CREATE view IF NOT EXISTS view_retention_rate AS
SELECT t2.operator_id as “用户ID”
,to_date(register_day) as “注册日期”
,login_day as "登录日期"
,datediff(login_day,register_day) AS “登录时间距离注册日期的天数”
FROM (
(
SELECT DISTINCT operator_id
,to_date(create_time) AS login_day
FROM user_log
) t1
LEFT JOIN (
SELECT operator_id
,min(to_date(create_time)) AS register_day --用户访问APP的最小时间即为首次注册时间
FROM user_log
GROUP BY operator_id
) t2
ON t1.operator_id = t2.operator_id
)
;
结果如下:可以发现用户1注册日期在2020年11月10日,最近登录日期在20219月20日,留存达314天。
第二步:
利用已经计算出的时间计算用户留存率。
例如,想要计算用户次日留存率只需在上面的计算结果表找出登录时间距离注册日期的天数=1的数据,想要计算用户7日留存率,只需要在上表找出登录时间距离注册日期<=7的记录,代码如下:
SELECT a.register_day as "注册日期"
,COUNT(DISTINCT a.operator_id) AS "当天新增人总数"
,COUNT(DISTINCT CASE WHEN remain_days=1 THEN a.operator_id ELSE NULL END) AS "次日留存用户数"
,COUNT(DISTINCT CASE WHEN 0
,COUNT(DISTINCT CASE WHEN 7
,COUNT(DISTINCT CASE WHEN 30
,round(COUNT(DISTINCT CASE WHEN remain_days=1 THEN a.operator_id ELSE NULL END)/count(DISTINCT a.operator_id),2) AS "次日留存率"
,round(COUNT(DISTINCT CASE when 0
,round(COUNT(DISTINCT CASE when 7
,round(COUNT(DISTINCT CASE when 30
FROM view_Retention_rate a
GROUP BY a.register_day
;
结果输出如下:
到这里,一个简单的新客留存情况就完成啦!
03、分析留存率为何下降的原因
本次计算的是新客留存率,因此我们要分析的就是新客留存率下降的原因,分析原因可以从几个角度出发:人、产品、运营方式。
新客留存率下降的主要原因有:
……
04、如何提高留存率
想要提高留存率建议“对症下药”,通过留存率分析,找出留存率下降或一直很低的主要原因:产品核心功能不行?运营手段不行?还是没有吸引到目标客户?
针对这几点,给大家一些参考的方式:
……
05、一个好的留存率标准是什么
对于这样一个普遍的指标,不同的模型或业务场景下有不同的标准。前Airbnb 供给侧增长团队负责人 Lenny Rachitsky 和Eventbrite 首席产品官Casey Winters 在对Uber、Evernote、ServeyMonkey、Twitter、Facebook、Notion等20多款产品的增长专家进行了采访后,得出了一些结论。
根据业务类型的不同,各位增长专家认为好的留存率的标准分别如下:
6个月用户留存率标准应该是:
12个月的收入留存率标准应该是:
以上只是一些建议供大家参考,实际业务场景中还需要根据业务需求或业务体量进行合适的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07