
来源:早起Python
作者:刘早起
本文将基于东京奥运会奖牌榜数据,使用 pandas 进行数据分析可视化实战(文末可以下载数据与源码)
首先是奥运会奖牌数据的获取,虽然有很多接口提供数据,但是通过奥运会官网拿到的数据自然是最可靠的
通过对东京奥运会官网奖牌榜的页面分析,发现其表格在前端是通过 嵌入的,所以可以使用 pandas.read_html() 轻松读取
之后再读取本地分日奖牌数据并将国家ID进行匹配
注意到上面的 df1 列名并没有完整,所以可以使用 rename 函数修改指定列的名称
既然 df2 有时间列,为了方便后面分析,自然要检查一下其类型
可以看到,获奖时间列虽然没有缺失值但其并不是pandas支持的时间类型。
好在修改列属性并不是什么困难的事情,一行代码轻松搞定(7-12)
通过观察可以发现,df2并没有 国家名称 列,但是其与 df1 有一个共同列 国家id
为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情
现在 df2 就调整的差不多了(由于源数据问题,部分获奖时间与真实时间有一定误差),下面开始进行分析
下面对 df2 进行一些统计分析,计算每个国家的奖牌总数(也就是出现次数),并查看奖牌数前5名,结果可以用 df1 进行验证
看完国家奖牌排行,接下来计算获得奖牌最多的运动员(注意:仅统计单人项目)
这里无需使用分组功能,只需要按照运动员姓名列进行频率统计即可。
下面筛选出全部乒乓球的获奖信息,这里的筛选有多种写法,你能写出几种?
现在查看各国在各项目上的奖牌详情,下面是通过透视得到的答案,但你会使用使用数据分组功能吗?
在上一题的基础上,查询中国队的获奖牌详情,注意是查询而不是筛选,所以使用上上一题的方法将会报错
如何将上一题的结果进一步突出展示,可以使用 pandas 中的 style
上面说到,df2 的获奖时间部分并不准确(主要体现在小时上),所以我们干脆将时间精确到天,这里可以使用 map 对一整列进行操作
接下来,让我们统计每天产生的奖牌总数
可以看到,最后一天产生的奖牌数量最多
再来查看不同项目在不同国家的分布情况,同样也可以使用分组功能实现
接下来让我们计算中国每日总奖牌数量,你能想到该如何实现吗?
最后,计算前十名各国每日奖牌数量统计,注意:对于第一天没有数据的国家用0填充,其余时间的缺失值用上一日数据填充。
这看似简单的问题,涉及的 pandas 操作还真不少!
首先制作奖牌排行榜
上图使用 matplotlib 制作,看起来不错,但代码量也确实不少
接下来使用 pyecharts 绘制上一题奖牌榜各奖牌的细分
使用 pyecharts 的好处就是使用封装好的方法,代码量相对较少
现在进一步绘制中国队的奖牌分布
同样使用 pyecharts ,实际行代码搞定
现在绘制奖牌分布的热力地图
使用 pyecharts 绘制,绘图代码不多,但是调整国家中英文映射字典是一件痛苦的事情
最后绘制每日奖牌榜前十奖牌数量的动态图,使用 matplotlib 或 pyecharts 均得不到较好的效果,所以这里使用另一个第三方库 bar_chart_race 进行绘制
以上就是基于 2020年东京奥运会 数据进行的一系列数据分析可视化流程,基本涉及到利用 Pandas 进行数据分析的主要操作,是一份不可多得的简单易懂、利于探索的数据集。
df1 = pd.read_html("https://olympics.com/tokyo-2020/olympic-games/zh/results/all-sports/medal-standings.htm")[0]
df2 = pd.read_csv("东京奥运会奖牌分日数据.csv")
修改列名
df1.rename(columns={'Unnamed: 2':'金牌数', 'Unnamed: 3':'银牌数', 'Unnamed: 4':'铜牌数'},inplace=True)
数据类型查看与修改
df2.info()
df2['获奖时间'] = pd.to_datetime(df2['获奖时间'])
数据合并
temp = pd.merge(df1,df2,on = '国家id') #先合并 temp['获奖时间'] = pd.to_datetime(temp['获奖时间'])#修改类型 temp = temp.sort_values(by=['获奖时间','奖牌类型'], ascending=True, ignore_index=True)#排序,和df2一样 df2['国家'] = temp['国家奥委会']#赋值
数据分组
数据统计
数据筛选
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['国家','运动类别'],aggfunc = 'count')
数据查询
result.query("国家 == ['中国']")
个性化查看
(result.query("国家 == ['中国']")
.style
.bar(subset=['奖牌类型'],color='skyblue'))
数据格式化
def time_format(x): return x.strftime("%m月%d日")
df2['获奖时间'] = df2['获奖时间'].map(time_format)
分组统计
df2.groupby("获奖时间")['国家'].count().sort_values()
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['运动类别','国家'],aggfunc = 'count')
数据计算
pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['中国']").cumsum()
数据计算
data = pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['美国', '中国', '日本', '英国', 'ROC', '澳大利亚', '荷兰', '法国', '德国', '意大利']") data = data.unstack() data.columns = data.columns.get_level_values(1) data.columns.name = None data = data.cumsum() data = data.fillna(axis=0,method='ffill').fillna(0) data
条形图
堆叠图
环形图
地图
动态图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18