京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在如今这个信息爆炸时代,数据可视化的重要性不言而喻。
经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。传统的表格看着不仅费劲,还不能在第一时间抓住主要信息,还好世界上还有数据可视化这么个黑科技。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。
数据可视化能够有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。
那么都有哪些常用的数据可视化工具呢?
ggplot2 —强大的 R可视化包
R是一款偏向于统计分析的脚本语言软件。基于S语言开发,如果你是R语言忠实fans,我相信你一定不会不知道R里单独的一个绘图包—ggplot2。之所以给ggplot2“强大”的头衔,一方面确实能够轻松应付各个领域的图像绘制,静态的、动态的、个性化特制的;另一方面作者本人就是学统计学的,非常熟悉这个包。
matplotlib —数据科学的达芬奇
如果你偏好使用Python做数据分析,那我相信你对matplotlib不能再熟悉了,matplotlib 是Python语言及其数学扩展包 NumPy的可视化操作界面。
Matplotlib的优点:带有内置代码的默认绘图样式;与Python的深度集成;图形绘制相较Gnuplot更加美观。缺点嘛,高度依赖其他包,如Numpy。只适用于Python:很难在Python以外的语言中使用。
PowerBI —微软忠实用户离不开的交互式标板
Power BI是Microsoft提供的业务分析服务。它提供具有自助式商业智能功能的交互式可视化,用户可以自行创建报告和仪表板,而无需依赖信息技术人员或数据库管理员。PowerBI与excel无缝接入,专业增强版的excel更是不需要安装PowerBI插件,打开excel就可食用了。
Tableau —菜单式操作用户的福音书
Tableau 是基于斯坦福大学突破性技术的软件应用程序。它帮助您生动地分析实际存在的任何结构化数据,以在几分钟内生成美观的图表、坐标图、仪表盘与报告。利用 Tableau 简便的拖放式界面,可以自定义视图、布局、形状、颜色等等,帮助你展现出自己的数据视角。
Tableau的强大之处
Tableau都有哪些强大之处呢?它的其中一个优势就是能让不懂数据的人,也能像看漫画一样看懂数据流,比如像这样:
Tableau作为近两年数据分析行业的“后起之星”,已经因其界面美观、易于操作、完美结合Excel和SQL,连续6年被评为数据分析工具的领导者。
Tableau有多受欢迎
如今在大数据不断发展的趋势下,越来越多的企业需要一个数据可视化的工具协助处理数据信息,希望被处理后的数据能被更多人看懂和理解。
因此在这种趋势之下,Tableau应运而生。虽然Tableau的知名度可能暂时还无法同Python相媲美,但是它将Excel和SQL完美结合,既能分析数据,又能讲数据,因此成为了各大公司求职必备技能之一。
从去年开始美国各大公司如摩根士丹利、亚马等互联网公司、科技公司、投行就已经在招聘的岗位JD中明确表示,候选人需要具备Tableau能力。
而且有数据显示,在数据分析领域对Tableau人才的需求量,已经超过传统的Excel和当红的Python。
对Tableau人才需求量最大的岗位:
学会Tableau=高薪?
Tableau人才的薪资真的是高得让人眼红。例如在美国,熟练掌握Tableau技能的人才平均年薪可以超过11万美金。
*图片来源:网络
而在国内精通Tableau技能,薪资同样高到吓人。在国内Tableau人才中,月薪1W+的人超过50%,有23%的人能拿到月薪2W+,薪资最高的人可以拿到4W+。
此外,在国内除了数据分析、商业分析等岗位对Tableau人才的需求量大以外,越来越多的岗位都需要Tableau技能,如产品经理、运营、项目经理等。从事相关岗位再加上Tableau技能的加持,薪资待遇会更胜一筹。
就拿字节跳动来说,除了数据分析类的工作以外,他们在招聘运营经理,产品经理的时候,岗位JD中都提到了Tableau技能。这些需求Tableau技能的岗位,平均年薪都达到了25W+。
以上说了这么多Tableau的厉害之处,到底应该如何入门学习呢?
这场Tableau入门直播课
墙裂推荐你看看!
教你一小时快速入门
Tableau可视化分析
6月8日周二晚8点
扫描下图二维码
即可进群免费听直播
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24