
在如今这个信息爆炸时代,数据可视化的重要性不言而喻。
经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。传统的表格看着不仅费劲,还不能在第一时间抓住主要信息,还好世界上还有数据可视化这么个黑科技。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。
数据可视化能够有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。
那么都有哪些常用的数据可视化工具呢?
ggplot2 —强大的 R可视化包
R是一款偏向于统计分析的脚本语言软件。基于S语言开发,如果你是R语言忠实fans,我相信你一定不会不知道R里单独的一个绘图包—ggplot2。之所以给ggplot2“强大”的头衔,一方面确实能够轻松应付各个领域的图像绘制,静态的、动态的、个性化特制的;另一方面作者本人就是学统计学的,非常熟悉这个包。
matplotlib —数据科学的达芬奇
如果你偏好使用Python做数据分析,那我相信你对matplotlib不能再熟悉了,matplotlib 是Python语言及其数学扩展包 NumPy的可视化操作界面。
Matplotlib的优点:带有内置代码的默认绘图样式;与Python的深度集成;图形绘制相较Gnuplot更加美观。缺点嘛,高度依赖其他包,如Numpy。只适用于Python:很难在Python以外的语言中使用。
PowerBI —微软忠实用户离不开的交互式标板
Power BI是Microsoft提供的业务分析服务。它提供具有自助式商业智能功能的交互式可视化,用户可以自行创建报告和仪表板,而无需依赖信息技术人员或数据库管理员。PowerBI与excel无缝接入,专业增强版的excel更是不需要安装PowerBI插件,打开excel就可食用了。
Tableau —菜单式操作用户的福音书
Tableau 是基于斯坦福大学突破性技术的软件应用程序。它帮助您生动地分析实际存在的任何结构化数据,以在几分钟内生成美观的图表、坐标图、仪表盘与报告。利用 Tableau 简便的拖放式界面,可以自定义视图、布局、形状、颜色等等,帮助你展现出自己的数据视角。
Tableau的强大之处
Tableau都有哪些强大之处呢?它的其中一个优势就是能让不懂数据的人,也能像看漫画一样看懂数据流,比如像这样:
Tableau作为近两年数据分析行业的“后起之星”,已经因其界面美观、易于操作、完美结合Excel和SQL,连续6年被评为数据分析工具的领导者。
Tableau有多受欢迎
如今在大数据不断发展的趋势下,越来越多的企业需要一个数据可视化的工具协助处理数据信息,希望被处理后的数据能被更多人看懂和理解。
因此在这种趋势之下,Tableau应运而生。虽然Tableau的知名度可能暂时还无法同Python相媲美,但是它将Excel和SQL完美结合,既能分析数据,又能讲数据,因此成为了各大公司求职必备技能之一。
从去年开始美国各大公司如摩根士丹利、亚马等互联网公司、科技公司、投行就已经在招聘的岗位JD中明确表示,候选人需要具备Tableau能力。
而且有数据显示,在数据分析领域对Tableau人才的需求量,已经超过传统的Excel和当红的Python。
对Tableau人才需求量最大的岗位:
学会Tableau=高薪?
Tableau人才的薪资真的是高得让人眼红。例如在美国,熟练掌握Tableau技能的人才平均年薪可以超过11万美金。
*图片来源:网络
而在国内精通Tableau技能,薪资同样高到吓人。在国内Tableau人才中,月薪1W+的人超过50%,有23%的人能拿到月薪2W+,薪资最高的人可以拿到4W+。
此外,在国内除了数据分析、商业分析等岗位对Tableau人才的需求量大以外,越来越多的岗位都需要Tableau技能,如产品经理、运营、项目经理等。从事相关岗位再加上Tableau技能的加持,薪资待遇会更胜一筹。
就拿字节跳动来说,除了数据分析类的工作以外,他们在招聘运营经理,产品经理的时候,岗位JD中都提到了Tableau技能。这些需求Tableau技能的岗位,平均年薪都达到了25W+。
以上说了这么多Tableau的厉害之处,到底应该如何入门学习呢?
这场Tableau入门直播课
墙裂推荐你看看!
教你一小时快速入门
Tableau可视化分析
6月8日周二晚8点
扫描下图二维码
即可进群免费听直播
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10