京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据条件下的创新评估
一种方案可以获得大数据,只要设计这个系统是可以很容易采集数据,可以很清楚进行分析,接下来可以设计出针对性的解决方案。另一种方法是很简单的低成本,用现在的创新术语来讲就是朴素性创新。两种各有各的好处,如何评估哪个更好,情境很重要。

一、创新技术领域的评估
创新的价值评估要分不同领域来看,在技术领域,有定量和定性两种标准,定量可以分析技术产生多少销售额,定性可以分析市场、社会、时代和历史对技术本身的评价。
二、创新科学领域的评估
而在科学领域则面临的是发现。所以对于科学的评估,我国国情基本都是用数paper,管理学领域就是看SCI和SSCI,还有UTD24,但是定性也是在不停的反思,你的学术影响力到底大不大,是不是还是要有同行评价的方法,同行评价就是看这个圈子里其他专家是否认可。
三、创新产业领域的评估
第三个领域是产业域。国内的七宗罪,第一是以模仿为主,原创为辅。第二是关注渐进,轻视突破。第三是成本导向,忽略价值。第四是只管需求,不顾供给。第五是原创走红,不敢变革。第六是强调模式,不屑技术。最后一个是“网+”为主,制造为辅。所以现在仍然评估,缺少颠覆传统的勇气和眼光。哪种创新能够改变世界呢?归根到底我们为新而新,无异于缘木求鱼,追求短期效益,缺乏长远规划。
四、创新制度领域的评估
第四个域叫制度域,确切的讲叫体制域。不管是当年英国革命,确立了君主立宪制,还是后来我国自己的康有为的洋务运动,直到五四运动,再到改革开放,一直在制度体制方面做了很多工作。对于体制领域创新如何评估,如果说制度的改变、体制的改革,能够带来一定程度的生产生活改善,这个定量的评估该怎么做,或者是定性我们说解放生产力怎么评估,都是值得思考的问题。
五、创新文化领域的评估
第五是创新的文化域,在文化域中分析受欢迎的程度或者是公众接受的程度。对文化的创新应该遵照什么标准,定量指标看,对于公众是否提升了幸福指数。所以在不同的这些域里面,技术、科学、产业、制度和文化,应深入思考。
六、五大领域的关键词
五个不同的领域里有不同的关键词,技术领域是发明,科学领域是发现,产业领域是推广,制度领域是改革,文化领域是粉丝,在不同的领域里面创新,他们评估方法可能有所不同,但是也有相通的地方。解决问题可能有创造力,也可能没有创造力,有可持续性,也可能没有持续性,对于既有创造性又有可持续解决问题,对原来比较狭义的理解可能会产生不一样的效果。尤其是在我们学校教育科研里面,应该以定量为基础依据,以定性为重要参考。
七、相关数据分析
一些数据方面的基础工作,包括企业间的联盟数据库,跟“一带一路”的数据类似。首先,国家自然科学基金委他们一直很强调,建立中国企业基础数据库的重要性,目前为止获得了2001至2005年完整联盟的原始数据。关键的信息是这样的,包括成立时间、成员企业、联盟活动、种类如何、是否有研发生产的、专利信息等等,涵盖了十个高新技术企业、两千多个联盟3500个企业。目前还存在一些问题,需求如何,企业的名称有的时候不规范或不统一,企业的编号不一致,有的时候会重叠,专利数如何分配等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30