京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:GUI工作组
在我们平常使用Python进行数据处理与分析时,在import完一大堆库之后,就是对数据进行预览,查看数据是否出现了缺失值、重复值等异常情况,并进行处理。
本文将结合GUI工具PySimpleGUI,来讲解如何制作一款属于自己的数据预处理小工具,让这个过程也能够自动化!最终效果如下
本文将分为三部分讲解:
制作GUI界面数据处理讲解打包与测试
主要涉及将涉及以下模块:
PySimpleGUIpandasmatplotlib
老规矩,先讲思路再上代码,首先还是说一下,使用PySimpleGUI还是那四个流程
“
引入模块==>创建元素并填充layout==> 创建窗体 ==>创建事件循环
”
从元素看,从图中可以知道我们需要的元素有使用说明这个菜单栏、看上去是凹下去的数据预处理框、框内的3个单选项值、读取文件路径的3个元素(固定文本、输入文本、浏览按钮)、"查看、处理、关闭"三个按钮。
从总体看,整个窗体中我们需要所有的元素呈现正中间的分布状态。其中菜单栏在窗体边缘靠左分布。采用行衔接式的总分布。
从事件上看,我们需要在使用说明菜单中加上使用者需要的注意事项。而文件读取位置我们设置我们常用的2种数据存储格式(“.xlsx”,“.xls”)的Excel格式。
读取后,我们在数据预处理框架选择一种处理。接着,我们可以对每一种错误进行弹出框查看,查看完之后对数据做最终处理。
处理的过程需要将处理好的数据覆盖原来的数据文件。整个过程必须是持续不间断的。这里说个tips:每次数据分析之前最好做一个备份,防止分析过程中失败但是又找不到原来数据文件的尴尬。
看望思路后是不是有种蠢蠢欲动的感觉?!我们来实现一波,先看完整代码,后面详细拆解
import PySimpleGUI as sg import pandas as pd import matplotlib
matplotlib.use("TkAgg")
sg.ChangeLookAndFeel('GreenTan')
menu_def = [['&使用说明', ['&注意']]]
layout = [
[sg.Menu(menu_def, tearoff=True)],
[sg.Frame(layout=[
[sg.Radio('重复值处理', "RADIO1",size=(15,1),key="dup"), sg.Radio('缺失值处理',
"RADIO1",size=(15,1),key="mis"),
sg.Radio('异常值处理', "RADIO1",default=True,key="war")]], title='数据预处理',
title_color='green',title_location='n',
relief=sg.RELIEF_SUNKEN, tooltip='选择其中一种处理方式' )],
[sg.Text('文件位置', size=(8, 1), auto_size_text=False, justification='right'),
sg.InputText(enable_events=True,key="lujing"), sg.Button('浏览',key = 'getf')],
[sg.Button('查看',key = 'look'),sg.Submit('处理',key = 'handle'), sg.Cancel('关闭')]]
window = sg.Window('特征工程', layout, default_element_size=(40, 1), grab_anywhere=False) while True:
event, values = window.read()
if event == 'getf':
text = sg.popup_get_file('请点击浏览键或自行填入文件绝对路径',
title = '获取件',file_types = (("Excel Files", "*.xlsx"),
("Excel Files", "*.xls"),))
sg.popup('提示', '是否确认选择文件---', text)
window['lujing'].update(text)
if event == "look":
'''
用户点击查看按钮促发的事件
''' if event == "handle":
'''
用户点击处理按钮促发的事件
'''
if event == "Cancel" or event == sg.WIN_CLOSED:
break
if event == "注意":
'''
注意事项编写
'''
其实有了思路后,你就会发现似乎一切都变得简单了。接下来讲解相关参数的作用。
首先是matplotlib.use("TkAgg"):使用matplotlib模块并且调用这个函数的目的是在我们进行查看异常值处理(箱型图展示)所用到,是改变图像显示的方式:TkAgg(一个交互式后台)。
所谓交互式后台就是你可以对图像进行任意操作,区域放大缩小、值查看等功能。
之所以调用这个函数首先是因为我们使用的是GUI是要有那种交互的感觉的,其次是如果数据量较大时,箱型图会很小,这样子可以利于查看。
其次sg.ChangeLookAndFeel('GreenTan'):改变窗体颜色。
那么menu_def就是菜单栏,使用【“”,【“”】】这种格式来定义主菜单栏和子菜单栏。tearoff这个函数是加一条可爱的虚线间隔每个字段。
sg.Frame():这个和sg.columns()元素的用法是一样的,主要是用来多个子元素的,我们这里设置了relief参数来让整个框架在观感上显得凹形。tooltip参数是你鼠标移动框架的位置出现的小提示框。
title_location参数的用法非常有趣,是标题字符串的位置设置,有(n,s,e,w,se等),你很快会发现这个位置和其他元素布局位置设置不一样,他是以地理位置坐标做子参数的。
sg.Radio:单选选项框,要将所有的单选选项框的子参数group_id都设成一样的,这样你才能三个选项中选一个,这里我们以"RADIO1"为group_id。
sg.Button():整个GUI中我们使用了4个按钮,其中有一个专有的按钮Cancel。
sg.popup():比较初级的弹出框,显示提示类的关键信息所用到。
sg.popup_get_file():这是一个高级的弹出框元素,是从带有文本输入字段和浏览按钮的弹出窗口,以便用户选择文件。效果如下
GUI部分搞定后,接着我们讲解数据处理部分,主要是针对重复值、缺失值和异常值。
我们这里用到的是2020年10月28日A股的行情。数据部分展示:
我们可以看到这里面有重复的行、有缺失值的地方。
对于二维列表DataFrame来讲使用Pandas模块是最方便最象征办公简洁化的模块
import pandas as pd
df = df.read_excel('文件绝对路径')
imfor = df[df.duplicated()]
imfor = str(imfor)
首先调用Pandas模块并读取文件路径,这里我们采取绝对路径而不采取相对路径的原因是我们之后打包的GUI是不依靠文件的靠Python自带的环境,所以相对路径读取是无法识别的。
df[df.duplicated()]这个Pandas内的函数是以二维列表形式来打印重复值对应的行。这里把df变量变为str字符串形式是因为我们在后来GUI中使用弹出窗口的元素时要以字符串形式加载。
最终处理重复值的方法如下:
df = df.drop_duplicates(inplace = True)
代码只有一行,却能做到将整个数据表中的重复值都删除,说明Pandas函数的强大。
至于为什么用inplace = True,是因为删除函数不并不能改变原表格结构,所以需要将新表覆盖原来的表格。
先看代码,其实在之前有关缺失值处理我在一年前就写过相关文章点击查看
import pandas as pd
df = df.read_excel('文件绝对路径') #df.isnull() imfor1 = df.isnull().sum() #df.isnull().any()
imfor1 = str(imfor1)
对于有缺失值的的数据表来说,df.isnull()或者df.isna()来查看空值。这个函数的作用时判断是否为空值,若是为空值则赋予True,否则赋予False。
这里我们使用df.isnull().sum()来统计每一列字段的缺失值数量。如果数据量大的话,还可以使用df.isnull().any()来查看只有缺失值的行。
解决方法,处理缺失值的方法有很多种,取均值、取中位数、删除、取下方的值等。我们这里用取上方值的方法来填补。
df = df.fillna(method='pad')
所谓异常值,就是在一个数字字段里出现一个或多个不合群得数字。举个例子,在一列都为个位数得数字列中出现了一个百位数的数字,这个百位数就是异常值。
用Python检测异常值有两种:箱线图图观察和标准差观察。这里我们选则箱体图观察。
箱线图是用于显示所选数据分散情况的统计图,通过设定标准,将大于或小于箱体图上下线的数值表示为异常点。
如图,下四分分位数指的是样本中有百分之25的数据小于这个数,记为。上四分分位数指的是样本中有百分之25大于这个数,记为。上四分位数和下四分位数的差值的1.5倍加上上四分位数就是上边缘,反之为下边缘。
“
上边缘
下边缘
”
在Pandas中可以调用.boxplot()函数来画箱型图
import pandas as pd
df.boxplot()
在写完全部代码之后,我们可以使用pyinstaller进行打包。
假定你的程序命名为yuchuli.py,在cmd窗口输入即可完成打包。
pyinstaller -F yuchuli.py
打包后,exe在Python文件所在文件夹的dist文件夹中。我们启动来看下效果
可以看到,我们需要的数据预处理的三个功能:重复值、缺失值、异常值都能按照指定方式进行处理!
当然你可以在本文提供的方法上,自己进行修改,来定制一款属于你自己平时习惯的数据预处理小软件!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22