来源:早起Python
作者:GUI工作组
在我们平常使用Python进行数据处理与分析时,在import完一大堆库之后,就是对数据进行预览,查看数据是否出现了缺失值、重复值等异常情况,并进行处理。
本文将结合GUI工具PySimpleGUI,来讲解如何制作一款属于自己的数据预处理小工具,让这个过程也能够自动化!最终效果如下
本文将分为三部分讲解:
制作GUI界面数据处理讲解打包与测试
主要涉及将涉及以下模块:
PySimpleGUIpandasmatplotlib
老规矩,先讲思路再上代码,首先还是说一下,使用PySimpleGUI还是那四个流程
“
引入模块==>创建元素并填充layout==> 创建窗体 ==>创建事件循环
”
从元素看,从图中可以知道我们需要的元素有使用说明这个菜单栏、看上去是凹下去的数据预处理框、框内的3个单选项值、读取文件路径的3个元素(固定文本、输入文本、浏览按钮)、"查看、处理、关闭"三个按钮。
从总体看,整个窗体中我们需要所有的元素呈现正中间的分布状态。其中菜单栏在窗体边缘靠左分布。采用行衔接式的总分布。
从事件上看,我们需要在使用说明菜单中加上使用者需要的注意事项。而文件读取位置我们设置我们常用的2种数据存储格式(“.xlsx”,“.xls”)的Excel格式。
读取后,我们在数据预处理框架选择一种处理。接着,我们可以对每一种错误进行弹出框查看,查看完之后对数据做最终处理。
处理的过程需要将处理好的数据覆盖原来的数据文件。整个过程必须是持续不间断的。这里说个tips:每次数据分析之前最好做一个备份,防止分析过程中失败但是又找不到原来数据文件的尴尬。
看望思路后是不是有种蠢蠢欲动的感觉?!我们来实现一波,先看完整代码,后面详细拆解
import PySimpleGUI as sg import pandas as pd import matplotlib
matplotlib.use("TkAgg")
sg.ChangeLookAndFeel('GreenTan')
menu_def = [['&使用说明', ['&注意']]]
layout = [
[sg.Menu(menu_def, tearoff=True)],
[sg.Frame(layout=[
[sg.Radio('重复值处理', "RADIO1",size=(15,1),key="dup"), sg.Radio('缺失值处理',
"RADIO1",size=(15,1),key="mis"),
sg.Radio('异常值处理', "RADIO1",default=True,key="war")]], title='数据预处理',
title_color='green',title_location='n',
relief=sg.RELIEF_SUNKEN, tooltip='选择其中一种处理方式' )],
[sg.Text('文件位置', size=(8, 1), auto_size_text=False, justification='right'),
sg.InputText(enable_events=True,key="lujing"), sg.Button('浏览',key = 'getf')],
[sg.Button('查看',key = 'look'),sg.Submit('处理',key = 'handle'), sg.Cancel('关闭')]]
window = sg.Window('特征工程', layout, default_element_size=(40, 1), grab_anywhere=False) while True:
event, values = window.read()
if event == 'getf':
text = sg.popup_get_file('请点击浏览键或自行填入文件绝对路径',
title = '获取件',file_types = (("Excel Files", "*.xlsx"),
("Excel Files", "*.xls"),))
sg.popup('提示', '是否确认选择文件---', text)
window['lujing'].update(text)
if event == "look":
'''
用户点击查看按钮促发的事件
''' if event == "handle":
'''
用户点击处理按钮促发的事件
'''
if event == "Cancel" or event == sg.WIN_CLOSED:
break
if event == "注意":
'''
注意事项编写
'''
其实有了思路后,你就会发现似乎一切都变得简单了。接下来讲解相关参数的作用。
首先是matplotlib.use("TkAgg"):使用matplotlib模块并且调用这个函数的目的是在我们进行查看异常值处理(箱型图展示)所用到,是改变图像显示的方式:TkAgg(一个交互式后台)。
所谓交互式后台就是你可以对图像进行任意操作,区域放大缩小、值查看等功能。
之所以调用这个函数首先是因为我们使用的是GUI是要有那种交互的感觉的,其次是如果数据量较大时,箱型图会很小,这样子可以利于查看。
其次sg.ChangeLookAndFeel('GreenTan'):改变窗体颜色。
那么menu_def就是菜单栏,使用【“”,【“”】】这种格式来定义主菜单栏和子菜单栏。tearoff这个函数是加一条可爱的虚线间隔每个字段。
sg.Frame():这个和sg.columns()元素的用法是一样的,主要是用来多个子元素的,我们这里设置了relief参数来让整个框架在观感上显得凹形。tooltip参数是你鼠标移动框架的位置出现的小提示框。
title_location参数的用法非常有趣,是标题字符串的位置设置,有(n,s,e,w,se等),你很快会发现这个位置和其他元素布局位置设置不一样,他是以地理位置坐标做子参数的。
sg.Radio:单选选项框,要将所有的单选选项框的子参数group_id都设成一样的,这样你才能三个选项中选一个,这里我们以"RADIO1"为group_id。
sg.Button():整个GUI中我们使用了4个按钮,其中有一个专有的按钮Cancel。
sg.popup():比较初级的弹出框,显示提示类的关键信息所用到。
sg.popup_get_file():这是一个高级的弹出框元素,是从带有文本输入字段和浏览按钮的弹出窗口,以便用户选择文件。效果如下
GUI部分搞定后,接着我们讲解数据处理部分,主要是针对重复值、缺失值和异常值。
我们这里用到的是2020年10月28日A股的行情。数据部分展示:
我们可以看到这里面有重复的行、有缺失值的地方。
对于二维列表DataFrame来讲使用Pandas模块是最方便最象征办公简洁化的模块
import pandas as pd
df = df.read_excel('文件绝对路径')
imfor = df[df.duplicated()]
imfor = str(imfor)
首先调用Pandas模块并读取文件路径,这里我们采取绝对路径而不采取相对路径的原因是我们之后打包的GUI是不依靠文件的靠Python自带的环境,所以相对路径读取是无法识别的。
df[df.duplicated()]这个Pandas内的函数是以二维列表形式来打印重复值对应的行。这里把df变量变为str字符串形式是因为我们在后来GUI中使用弹出窗口的元素时要以字符串形式加载。
最终处理重复值的方法如下:
df = df.drop_duplicates(inplace = True)
代码只有一行,却能做到将整个数据表中的重复值都删除,说明Pandas函数的强大。
至于为什么用inplace = True,是因为删除函数不并不能改变原表格结构,所以需要将新表覆盖原来的表格。
先看代码,其实在之前有关缺失值处理我在一年前就写过相关文章点击查看
import pandas as pd
df = df.read_excel('文件绝对路径') #df.isnull() imfor1 = df.isnull().sum() #df.isnull().any()
imfor1 = str(imfor1)
对于有缺失值的的数据表来说,df.isnull()或者df.isna()来查看空值。这个函数的作用时判断是否为空值,若是为空值则赋予True,否则赋予False。
这里我们使用df.isnull().sum()来统计每一列字段的缺失值数量。如果数据量大的话,还可以使用df.isnull().any()来查看只有缺失值的行。
解决方法,处理缺失值的方法有很多种,取均值、取中位数、删除、取下方的值等。我们这里用取上方值的方法来填补。
df = df.fillna(method='pad')
所谓异常值,就是在一个数字字段里出现一个或多个不合群得数字。举个例子,在一列都为个位数得数字列中出现了一个百位数的数字,这个百位数就是异常值。
用Python检测异常值有两种:箱线图图观察和标准差观察。这里我们选则箱体图观察。
箱线图是用于显示所选数据分散情况的统计图,通过设定标准,将大于或小于箱体图上下线的数值表示为异常点。
如图,下四分分位数指的是样本中有百分之25的数据小于这个数,记为。上四分分位数指的是样本中有百分之25大于这个数,记为。上四分位数和下四分位数的差值的1.5倍加上上四分位数就是上边缘,反之为下边缘。
“
上边缘
下边缘
”
在Pandas中可以调用.boxplot()函数来画箱型图
import pandas as pd
df.boxplot()
在写完全部代码之后,我们可以使用pyinstaller进行打包。
假定你的程序命名为yuchuli.py,在cmd窗口输入即可完成打包。
pyinstaller -F yuchuli.py
打包后,exe在Python文件所在文件夹的dist文件夹中。我们启动来看下效果
可以看到,我们需要的数据预处理的三个功能:重复值、缺失值、异常值都能按照指定方式进行处理!
当然你可以在本文提供的方法上,自己进行修改,来定制一款属于你自己平时习惯的数据预处理小软件!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03