京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
今天分享13个Python代码技巧。
来,数一数你知道几个。最后大家比一比!
1,2,3,开始!
作为程序员,一定离不开两个字:性能。
工作中经常要去解决性能的问题:
用time模块可以计算代码执行时间:
import time startTime = time.time()
# 要衡量的代码 for i in range(1000000):
print('麦叔:大家早上好!')
endTime = time.time()
totalTime = endTime - startTime print("总时间= ", totalTime)
你会吗?如果会,给自己加1分!
假设有两个列表,你想获取列表中的不同元素。
可以使用set的symmetric_difference方法:
list1 = ['张三', '李四', '王五', '大美', '如花'] list2 = ['张三', '李四', '王五', '麦叔'] set1 = set(list1) set2 = set(list2) list3 = list(set1.symmetric_difference(set2)) print(list3) #打印:['大美', '如花', '麦叔']
你会吗?如果会,给自己加1分!
在程序的世界里,内存是绝对的稀缺资源。程序员绞尽脑汁的想办法提升内存使用效率,有的为此头发都秃了。
所以了解某些对象所使用的内存数量是常用操作。使用sys.getsizeof可以获得对象所占用的字节数:
import sys
list1 = ['张三', '李四', '王五', '大美', '如花'] print("list1所用字节数 = ",sys.getsizeof(list1))
name = '麦叔' print("name的字节数 = ",sys.getsizeof(name))
注意:对于list等容器类对象,打印出的字节数只是容器本身占用的内存数,不包括它存放的内容所占用的内存。
了解Python的内存管理,请看我另一篇文章:
Python是如何管理内存的?
你会吗?如果会,给自己加1分!
第一个列表中存放了所有的迟到记录,里面有重复的名字。你上学迟到过吗?
我们要做的是去掉重复,获得一份没有重复的迟到人名单。
最简单的方法就是把list转成set,因为set是不允许重复的。
late_names = ['张三', '李四', '王五', '大美', '如花', '张三', '李四', '林志颖',
'大美'] print("迟到记录= ", late_names)
unqiue_late_names = list(set(late_names)) print("迟到过的人= ", unqiue_late_names)
你会吗?如果会,给自己加1分!
可以判断第一个元素的个数是否和列表的长度相同:
list1 = [20, 20, 20, 20] print("list1中都相同吗?", list1.count(list1[0]) == len(list1))
list2 = [20, 20, 20, 50] print("list2中都相同吗?", list2.count(list2[0]) == len(list2))
你会吗?如果会,给自己加1分!
有两个列表,里面内容相同,但顺序不同。
我们想确定一下它们是否完全相同。
有两个办法:
from collections import Counter one = [33, 22, 11, 44, 55] two = [22, 11, 44, 55, 33]
print("相同吗?", Counter(one) == Counter(two)) print("相同吗?", sorted(one) == sorted(two))
你会吗?如果会,给自己加1分!
由于set不能重复的特性,经常在判断唯一或者去重的时候使用。
下面的isUnque方法,通过推导式生成一个由None或True组成的序列。如果里面有True就说明重复:
def isUnique(item): tempSet = set()
return not any(i in tempSet or tempSet.add(i) for i in item)
list1 = [123, 345, 456, 23, 567]
print("list1都唯一吗? ", isUnique(list1))
list2 = [123, 345, 567, 23, 567]
print("list2都唯一吗? ", isUnique(list2))
你会吗?如果会,给自己加1分!
有时候从网上接收到的数据是字节码,比如这样的:xe9xbaxa6xe5x8fx94
我们需要把字节码转成字符串,否则就是乱码。
在转码的过程中也要使用正确的编码规则,否则还是乱码。
byteVar = bytes("麦叔密码", 'utf-8') print(byteVar) #编码规则不对,乱码:楹﹀彅瀵嗙爜
str1 = str(byteVar.decode("gbk")) print("字符串是:" , str1 ) #编码规则正确,
不乱 str2 = str(byteVar.decode("utf-8")) print("字符串是:" , str2 )
你会吗?如果会,给自己加1分!
循环的时候经常要打印序号,使用enumerate::
listOne = [123, 345, 456, 23] for index, element in enumerate(listOne): print(index, element)
你会吗?如果会,给自己加1分!
使用**给字典先解包,再把它们合并起来。合并的过程中,如果后面的key和前面一样会覆盖前面的value。
names1 = {1: '张三', 2: "李四", 3:"王五"}
names2 = {2: '麦叔', 4: "小强"}
all_names = {**names1, **names2} print(all_names)
你会吗?如果会,给自己加1分!
使用zip先把两个列表合成由元组组成的列表,然后再转成字典:
ids = [1, 2, 3, 4, 5] names = ['张三', '李四', '王五', '大美', '如花'] name_dict = dict(zip(ids, names)) print(name_dict)
你会吗?如果会,给自己加1分!
浮点数的计算可能会产生很多位小数,假设我们要求只显示2位小数:
number= 88.234578965467 print('{0:.2f}'.format(number))
你会吗?如果会,给自己加1分!
Python函数可以返回多个值,用逗号隔开。
实际上是返回了一个元组,但Python会自动解包,所以调用者可以直接使用返回值:
def total_diff(num1, num2): total = num1 + num2
diff = num1 - num2
return total, diff
total, diff = total_diff(99, 88)
print("总和:", total, "差额:", diff)
这13个小技巧,你会几个呢?别的小伙伴会几个呢?投票查看:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31