
P2P平台尝试大数据征信初见成效
现如今,大数据这一概念已开始对商业经营产生深刻影响。不少企业意识到,要想赢得市场竞争,关键是要通过数据分析和数据应用做出明智决策。然而,一个普遍的误区是,很多企业投入大量人力或物力去收集大数据,却最终淹没在海量数据中,未能对商业经营产生指导作用。
就目前来看,金融、电信、制造等价值数据拥有者,信息化水平较高,对于大数据业务的需求迫切。尤其是金融行业,对数据挖掘、分析、处理还有更高的要求,十分适合进行大数据的采集并进一步整合。
然而,对于大数据的采集成本还是比较高,很多外部数据都需要平台有偿获取,这方面主流的平台比较有优势,而其他的小型平台如果要切入大数据应用,还有很长的路要走。今后区分平台优劣,是否能最大限度地拥有大数据源将成为重要的标志之一。
大数据在互联网金融方面主要分为两个方向,第一个就是结构化的数据,在维度多的情况下用好,现有的数据挖掘方式还没有能够完全挖掘;还有一个方向就是非结构化的数据分析,因为现在有更多碎片化的数据产生。懂得怎么处理这些数据,建造模块的人,才是真正抓住互联网金融的核心。
金融的本质是风险:从风险领域进入,建造计算法则,把数据系统化是一个入手的方面。大数据征信,将注意力从数据的精确性转移到数据的相关性上来:个人的身份信息核实(从面对面实地核查到通过社交网络、微信、QQ等进行数据分析);个人的偿债能力,包括收入水平与债务压力(从考察一个人的工作性质、收入水平以及房产、汽车等财产信息以及现实债备情况到分析其的消费水平、每月消费金额甚至社交圈中的交谈等);个人的还款意愿(从分析还款记录到通过交易的好评度、朋友圈内的交流内容、甚至个人用语,对人物进行刻画分类);约束力(从传统的抵押、担保到将违约纪录纳入征信纪录中的制度设计等)。
“一定程度来说,正因为传统征信无法覆盖,才推动了大数据在风险管理领域的发展。反过来,大数据也可以丰富完善传统征信数据的不足,相互补充。”有关专家表示,大数据的分析并没有偏离风险管理的业务基础和判断逻辑。
现如今P2P企业纷纷自行建设征信数据库。记者针对现在比较火的几个P2P平台进行了采访调研,这其中,宜信宜人贷所开创的大数据征信模式是比较典型的代表。据宜人贷的产品负责人透露,其平台的信用管理体现在方方面面,除了进行基础的数据分析外,还关系到后续产品的政策制定,以及提供预期催收依据等等。
“宜信有着8年的线下征信经验,最初的征信都是通过人工审核来完成的。现在通过技术创新,我们将实现征信的自动化、数据化,提炼用户的个人基本特征、消费行为特征等,利用社交活动所形成的数据分析来客观评价一个人的信用度,从而判断其还款能力和欺诈风险。”
通过采集借款人各个维度的数据判定其违约成本,并给出可以贷款的额度和相应的风险定价。宜人贷的这种新型风控系统和传统的银行相比是模式上的重大创新。从而实现纯线上的P2P模式,减少平台企业的运营成本。
各家P2P企业已经开始逐渐形成自己的特点,而这种趋势也正在业内得以逐渐普及,相信随着国内P2P行业的进一步成熟,这种由各个细分领域所形成的征信大数据的集合将为行业整体的信用体系建设做出贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08