
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话
今天我们聊一聊 《演员请就位2》,最近开播的国综里面,热度最高的一定是《演员请就位》了。从第一季起这部综艺就话题不断,金句频出,前有李诚儒老师的“如坐针毡,如芒刺背,如鲠在喉”;这一季,李诚儒老师再出金句,“味同嚼蜡,味如鸡肋,如此乏味”一度刷爆网络。
《演员请就位2》导师方面,除了上一季的陈凯歌、赵薇、郭敬明,还有这季加入的尔冬升导演,阵容上就十分有看点。参加的演员方面也有胡杏儿、黄奕、娄艺潇等熟悉的身影。
《演员2》一开播就热搜话题不断,无论是李诚儒老师、尔冬升导演的犀利点评,郭敬明给演技小白何昶希发S卡都能引起大量的讨论。
我们今天就用Python分析了《演员2》的视频弹幕,看看大家都在吐槽些什么。
01、豆瓣6.5分 《演员2》为啥差强人意?
《演员请就位》目前为止已经播出了两季,第一季在豆瓣为6.8分,共有4万余人评分。
而目前正在播出的第二季,已有1万9千多人评分,分数为6.5分,比上一季还低了0.3分。
分数占比
我们用Python分析了豆瓣的500条热评数据,从评分分布可以看到:
分数占比方面,37%的人给出1星,20.8%的人给出2星。给出5星好评的仅有5%。
豆瓣短评
那么短评中都在说些什么呢?
从评价词云图中可见,话题主要集中在郭敬明、尔冬升、陈凯歌、李诚儒几位嘉宾上。这也是《演员2》被诟病的一点,嘉宾导师比参赛的演员更出圈,更有话题。此外,"节目"、"演技"、"点评"等也是短评中常出现的。
导演提及
几位嘉宾导师中,谁被提到的次数最多呢?
进一步分析可见,郭敬明占据着最高的话题度,其次是尔冬升和陈凯歌。
导演评价
在对导演和主持嘉宾的评价也十分有意思,对郭敬明的差评达到60.66%,超过的半数,好评仅为14.22%。这与尔冬升的评价差距很大,后者的差评仅为28.83%,好评度也是最高的,达到了29.73%。而有趣的是,作为主持人的大鹏差评度居然比郭敬明还高,达到了67.27%。
02、分析45万条弹幕数据,看看大家都在吐槽什么
我们使用Python获取并分析了《演员请就位2》的腾讯弹幕数据,分析了目前播放的前五期。
1.1 数据读入
首先导入所需库。
# 导入库 import os import jieba import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image # 用于在jupyter lab中显示本地图
使用pandas循环读取数据。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: # print(i) df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 449762 entries, 0 to 44317 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 episodes 449762 non-null object 1 comment_id 449762 non-null int64 2 oper_name 183066 non-null object 3 vip_degree 449762 non-null int64 4 content 449762 non-null object 5 time_point 449762 non-null int64 6 up_count 449762 non-null int64 dtypes: int64(4), object(3) memory usage: 27.5+ MB
共获取了前五期449762条弹幕数据。字段主要包括:期数、评论id、用户名、vip等级、评论内容、评论时间点和点赞数,数据预览如下:
df_all.head()
1.2 数据预处理
# 删除弹幕角色 df_all['content'] = df_all['content'].str.replace('(.*?:)', '') df_all.head()
1.3 数据可视化
弹幕走势图
先看到视频弹幕走势图,从数量上可以看到,弹幕数量前三的分别是:第一期上、第三期上、第五期上。而第一期下和第五期下的弹幕较少。
df_epinum = df_all['episodes'].value_counts().reset_index()
df_epinum['num'] = [1, 5, 3, 7, 6, 8, 4, 9, 2, 10]
df_epinum = df_epinum.sort_values('num')
df_epinum
x_data = df_epinum['index'].tolist()
y_data = df_epinum['episodes'].tolist()
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(xaxis_data=x_data)
bar1.add_yaxis('', y_axis=y_data)
bar1.set_global_opts(title_opts=opts.TitleOpts(title='前五期的弹幕数走势图'),
visualmap_opts=opts.VisualMapOpts(max_=60000, is_show=False) ) bar1.render()
人物弹幕词云
我们接着再分别看到几位导演导师的弹幕词云。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09