
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话
今天我们聊一聊 《演员请就位2》,最近开播的国综里面,热度最高的一定是《演员请就位》了。从第一季起这部综艺就话题不断,金句频出,前有李诚儒老师的“如坐针毡,如芒刺背,如鲠在喉”;这一季,李诚儒老师再出金句,“味同嚼蜡,味如鸡肋,如此乏味”一度刷爆网络。
《演员请就位2》导师方面,除了上一季的陈凯歌、赵薇、郭敬明,还有这季加入的尔冬升导演,阵容上就十分有看点。参加的演员方面也有胡杏儿、黄奕、娄艺潇等熟悉的身影。
《演员2》一开播就热搜话题不断,无论是李诚儒老师、尔冬升导演的犀利点评,郭敬明给演技小白何昶希发S卡都能引起大量的讨论。
我们今天就用Python分析了《演员2》的视频弹幕,看看大家都在吐槽些什么。
01、豆瓣6.5分 《演员2》为啥差强人意?
《演员请就位》目前为止已经播出了两季,第一季在豆瓣为6.8分,共有4万余人评分。
而目前正在播出的第二季,已有1万9千多人评分,分数为6.5分,比上一季还低了0.3分。
分数占比
我们用Python分析了豆瓣的500条热评数据,从评分分布可以看到:
分数占比方面,37%的人给出1星,20.8%的人给出2星。给出5星好评的仅有5%。
豆瓣短评
那么短评中都在说些什么呢?
从评价词云图中可见,话题主要集中在郭敬明、尔冬升、陈凯歌、李诚儒几位嘉宾上。这也是《演员2》被诟病的一点,嘉宾导师比参赛的演员更出圈,更有话题。此外,"节目"、"演技"、"点评"等也是短评中常出现的。
导演提及
几位嘉宾导师中,谁被提到的次数最多呢?
进一步分析可见,郭敬明占据着最高的话题度,其次是尔冬升和陈凯歌。
导演评价
在对导演和主持嘉宾的评价也十分有意思,对郭敬明的差评达到60.66%,超过的半数,好评仅为14.22%。这与尔冬升的评价差距很大,后者的差评仅为28.83%,好评度也是最高的,达到了29.73%。而有趣的是,作为主持人的大鹏差评度居然比郭敬明还高,达到了67.27%。
02、分析45万条弹幕数据,看看大家都在吐槽什么
我们使用Python获取并分析了《演员请就位2》的腾讯弹幕数据,分析了目前播放的前五期。
1.1 数据读入
首先导入所需库。
# 导入库 import os import jieba import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image # 用于在jupyter lab中显示本地图
使用pandas循环读取数据。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: # print(i) df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 449762 entries, 0 to 44317 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 episodes 449762 non-null object 1 comment_id 449762 non-null int64 2 oper_name 183066 non-null object 3 vip_degree 449762 non-null int64 4 content 449762 non-null object 5 time_point 449762 non-null int64 6 up_count 449762 non-null int64 dtypes: int64(4), object(3) memory usage: 27.5+ MB
共获取了前五期449762条弹幕数据。字段主要包括:期数、评论id、用户名、vip等级、评论内容、评论时间点和点赞数,数据预览如下:
df_all.head()
1.2 数据预处理
# 删除弹幕角色 df_all['content'] = df_all['content'].str.replace('(.*?:)', '') df_all.head()
1.3 数据可视化
弹幕走势图
先看到视频弹幕走势图,从数量上可以看到,弹幕数量前三的分别是:第一期上、第三期上、第五期上。而第一期下和第五期下的弹幕较少。
df_epinum = df_all['episodes'].value_counts().reset_index()
df_epinum['num'] = [1, 5, 3, 7, 6, 8, 4, 9, 2, 10]
df_epinum = df_epinum.sort_values('num')
df_epinum
x_data = df_epinum['index'].tolist()
y_data = df_epinum['episodes'].tolist()
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(xaxis_data=x_data)
bar1.add_yaxis('', y_axis=y_data)
bar1.set_global_opts(title_opts=opts.TitleOpts(title='前五期的弹幕数走势图'),
visualmap_opts=opts.VisualMapOpts(max_=60000, is_show=False) ) bar1.render()
人物弹幕词云
我们接着再分别看到几位导演导师的弹幕词云。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04