京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
大家好,又到了python办公自动化专题。今天讲的是各位一定会接触到的PDF转换,关于各种格式的文件转换为PDF有很多第三方工具与网站可以实现,但是使用Python的好处不仅可以批量转换,同时一旦脚本写完了以后就可以一键执行,彻底解放双手,那么本文就来盘一盘如何使用Python来将Word/Excel/PPT/Markdown/Html等各种格式的文件转换为PDF!
Word转PDF
Word转PDF应该是最常见的需求了,毕竟使用PDF格式可以更方便展示文档,虽然在Word中可以直接导出为PDF格式,但是使用Python可以批量转换,更加高效。
目前在Python中针对Word转换为PDF的库有很多,比如win32就可以调用word底层vba,将word转成pdf,或者comtypes等,但是这些常用的库仅能在Windows机器上运行,所以为了照顾mac用户本文使用一个比较小众的库docx2pdf,看名字就能知道这是专门用于word转pdf,安装很简单
pip install docx2pdf
使用也比win32等库更简洁,一行代码导入一行代码转换即可
from docx2pdf import convert
convert("input.docx", "output.pdf")
但是有人就会说虽然简单,但是这个操作word本身就可以完成,好的接下来放大招,我们可以使用下面的代码找到当前或者指定文件夹下的全部word文件
#查找当前目录下的全部word文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.docx"))
接下来只要写一个循环就可以将该目录下的全部word一次性转换为PDF
for file in FileList:
convert(file,f"{file}.pdf")
就这样,不到10行代码,只要一秒,指定文件夹中5份Word就轻松转换为PDF,现在还能使用我们之前自动化系列文章写过的批量合并PDF结合一键合并这5份PDF!
Excel转PDF
Excel转PDF可能平时用的不多,但是作为Office全家桶中的重要工具,并且转换完的表格可以复制所以我们也讲一下。使用到的工具既不是常用的openpyxl也不是pandas,而是另一个专门用于处理PDF的库fpdf
import pandas as pd import numpy as np df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
为了方便讲解我们使用Pandas和NumPy来创建一个示例数据文件,当然也可以使用从本地读取
现在可以使用下面的代码将这个表格转换为PDF
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font('arial', 'B', 14)
pdf.cell(60)
pdf.cell(70, 10, 'Excel to PDF', 0, 2, 'C')
pdf.cell(-40)
pdf.cell(50, 10, 'Index Column', 1, 0, 'C')
pdf.cell(40, 10, 'A', 1, 0, 'C')
pdf.cell(40, 10, 'B', 1, 2, 'C')
pdf.cell(-90)
pdf.set_font('arial', '', 12)
for i in range(0, len(df_1)):
col_ind = str(i)
col_a = str(df_1.A.iloc[i])
col_b = str(df_1.B.iloc[i])
pdf.cell(50, 10, '%s' % (col_ind), 1, 0, 'C')
pdf.cell(40, 10, '%s' % (col_a), 0, 0, 'C')
pdf.cell(40, 10, '%s' % (col_b), 0, 2, 'C')
pdf.cell(-90)
pdf.output('Excel2PDF.pdf', 'F')
,其实思路和openpyxl类似,遍历每一个单元格并写入数据,只不过现在是往PDF文件中写入。
PPT转PDF
本节介绍一下PPT如何转换为PDF,但是我搜了一大圈都没有MAC用户可以实现的方法,所以只能针对Windows去操作,使用到的就是在word2pdf中讲到的comtypes
import sys
import os
import comtypes.client
#设置路径
input_file_path = sys.argv[1]
output_file_path = sys.argv[2]
input_file_path = os.path.abspath(input_file_path)
output_file_path = os.path.abspath(output_file_path)
#创建PDF
powerpoint = comtypes.client.CreateObject("Powerpoint.Application")
powerpoint.Visible = 1
slides = powerpoint.Presentations.Open(input_file_path)
#保存PDF
slides.SaveAs(output_file_path, 32)
slides.Close()
相关参数与细节可以查阅comtypes官方文档,因为我是mac所以没有过多研究,在成功转换之后就可以和我们之前的批量操作与合并进行结合实现自动化了!
md转pdf
关于markdown转pdf,几乎所有markdown编辑器都支持导出为pdf格式,本以为这个需求并不高,但是研究了一圈发现很多老外造了很多md转pdf的轮子,比如md2pdf、markdown2pdf、md2pdf-client等。因为大多数博客使用的是markdown格式,使用这些库可以很好的将博客文章批量转换为PDF文档存储。
早起都试了一圈,找到一个语法最简单的markdown2pdf3,直接pip安装即可,使用两行代码即可将一个md文件转换为pdf
from markdown2pdf3 import *
convert_markdown_to_pdf('test.md') #你的markdown文件路径
但是要注意的是如果有中文,还需要进行一些额外的设置,可以查阅官方文档,不过现在就能和之前讲的Word转PDF结合,批量转换指定路径下的全部markdown文件为pdf,比如可以使用下面的代码找到当前文件夹下的全部md文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.md"))
html转pdf
关于html也就是网页转为PDF是来问我最多的问题,其实很简单,之前在Selenium爬取公众号全部文章这篇文章中就提到使用PDFKIT即可,但是并不是直接pip安装pdfkit就行,我们需要提前进入下面的网站选择自己电脑系统对应的wkhtmltopdf下载安装
https://wkhtmltopdf.org/downloads.html
安装完使用pip安装pdfkit
pip install pdfkit
现在我们就能使用两行代码转换指定网页为PDF格式,比如将我的第一篇自动化文章转为PDF
看起来效果还是非常好的,所有格式包括代码都完整的保存了下来,接下来怎么做就不用我多说了,比如你想下载一个公众号所有文章为PDF格式,那就先将历史文章URL提取出来,接着使用pdfkit转换即可,而这两步骤我们都已经详细讲解过了!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15