京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
大家好,又到了python办公自动化专题。今天讲的是各位一定会接触到的PDF转换,关于各种格式的文件转换为PDF有很多第三方工具与网站可以实现,但是使用Python的好处不仅可以批量转换,同时一旦脚本写完了以后就可以一键执行,彻底解放双手,那么本文就来盘一盘如何使用Python来将Word/Excel/PPT/Markdown/Html等各种格式的文件转换为PDF!
Word转PDF
Word转PDF应该是最常见的需求了,毕竟使用PDF格式可以更方便展示文档,虽然在Word中可以直接导出为PDF格式,但是使用Python可以批量转换,更加高效。
目前在Python中针对Word转换为PDF的库有很多,比如win32就可以调用word底层vba,将word转成pdf,或者comtypes等,但是这些常用的库仅能在Windows机器上运行,所以为了照顾mac用户本文使用一个比较小众的库docx2pdf,看名字就能知道这是专门用于word转pdf,安装很简单
pip install docx2pdf
使用也比win32等库更简洁,一行代码导入一行代码转换即可
from docx2pdf import convert
convert("input.docx", "output.pdf")
但是有人就会说虽然简单,但是这个操作word本身就可以完成,好的接下来放大招,我们可以使用下面的代码找到当前或者指定文件夹下的全部word文件
#查找当前目录下的全部word文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.docx"))
接下来只要写一个循环就可以将该目录下的全部word一次性转换为PDF
for file in FileList:
convert(file,f"{file}.pdf")
就这样,不到10行代码,只要一秒,指定文件夹中5份Word就轻松转换为PDF,现在还能使用我们之前自动化系列文章写过的批量合并PDF结合一键合并这5份PDF!
Excel转PDF
Excel转PDF可能平时用的不多,但是作为Office全家桶中的重要工具,并且转换完的表格可以复制所以我们也讲一下。使用到的工具既不是常用的openpyxl也不是pandas,而是另一个专门用于处理PDF的库fpdf
import pandas as pd import numpy as np df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
为了方便讲解我们使用Pandas和NumPy来创建一个示例数据文件,当然也可以使用从本地读取
现在可以使用下面的代码将这个表格转换为PDF
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font('arial', 'B', 14)
pdf.cell(60)
pdf.cell(70, 10, 'Excel to PDF', 0, 2, 'C')
pdf.cell(-40)
pdf.cell(50, 10, 'Index Column', 1, 0, 'C')
pdf.cell(40, 10, 'A', 1, 0, 'C')
pdf.cell(40, 10, 'B', 1, 2, 'C')
pdf.cell(-90)
pdf.set_font('arial', '', 12)
for i in range(0, len(df_1)):
col_ind = str(i)
col_a = str(df_1.A.iloc[i])
col_b = str(df_1.B.iloc[i])
pdf.cell(50, 10, '%s' % (col_ind), 1, 0, 'C')
pdf.cell(40, 10, '%s' % (col_a), 0, 0, 'C')
pdf.cell(40, 10, '%s' % (col_b), 0, 2, 'C')
pdf.cell(-90)
pdf.output('Excel2PDF.pdf', 'F')
,其实思路和openpyxl类似,遍历每一个单元格并写入数据,只不过现在是往PDF文件中写入。
PPT转PDF
本节介绍一下PPT如何转换为PDF,但是我搜了一大圈都没有MAC用户可以实现的方法,所以只能针对Windows去操作,使用到的就是在word2pdf中讲到的comtypes
import sys
import os
import comtypes.client
#设置路径
input_file_path = sys.argv[1]
output_file_path = sys.argv[2]
input_file_path = os.path.abspath(input_file_path)
output_file_path = os.path.abspath(output_file_path)
#创建PDF
powerpoint = comtypes.client.CreateObject("Powerpoint.Application")
powerpoint.Visible = 1
slides = powerpoint.Presentations.Open(input_file_path)
#保存PDF
slides.SaveAs(output_file_path, 32)
slides.Close()
相关参数与细节可以查阅comtypes官方文档,因为我是mac所以没有过多研究,在成功转换之后就可以和我们之前的批量操作与合并进行结合实现自动化了!
md转pdf
关于markdown转pdf,几乎所有markdown编辑器都支持导出为pdf格式,本以为这个需求并不高,但是研究了一圈发现很多老外造了很多md转pdf的轮子,比如md2pdf、markdown2pdf、md2pdf-client等。因为大多数博客使用的是markdown格式,使用这些库可以很好的将博客文章批量转换为PDF文档存储。
早起都试了一圈,找到一个语法最简单的markdown2pdf3,直接pip安装即可,使用两行代码即可将一个md文件转换为pdf
from markdown2pdf3 import *
convert_markdown_to_pdf('test.md') #你的markdown文件路径
但是要注意的是如果有中文,还需要进行一些额外的设置,可以查阅官方文档,不过现在就能和之前讲的Word转PDF结合,批量转换指定路径下的全部markdown文件为pdf,比如可以使用下面的代码找到当前文件夹下的全部md文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.md"))
html转pdf
关于html也就是网页转为PDF是来问我最多的问题,其实很简单,之前在Selenium爬取公众号全部文章这篇文章中就提到使用PDFKIT即可,但是并不是直接pip安装pdfkit就行,我们需要提前进入下面的网站选择自己电脑系统对应的wkhtmltopdf下载安装
https://wkhtmltopdf.org/downloads.html
安装完使用pip安装pdfkit
pip install pdfkit
现在我们就能使用两行代码转换指定网页为PDF格式,比如将我的第一篇自动化文章转为PDF
看起来效果还是非常好的,所有格式包括代码都完整的保存了下来,接下来怎么做就不用我多说了,比如你想下载一个公众号所有文章为PDF格式,那就先将历史文章URL提取出来,接着使用pdfkit转换即可,而这两步骤我们都已经详细讲解过了!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30