京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
上次出了一个在网站「Flourish」画动态条形图的文章【动态条形图视频教程】,需要登录网址很多人可能觉得不方便,现在有大佬出了个python包,只需几行代码就能搞定动态条形图,非常强大,给大家分享下。
一、前期准备工作
1、官方参考文档
GitHub :https://github.com/dexplo/bar_chart_race
说明文档:https://www.dexplo.org/bar_chart_race/
2、软件安装(该安装方法只能安装0.1版本)
pip install bar_chart_race conda install -c conda-forge bar_chart_race
0.2版本需要到github安装
压缩包解压到软件安装目录的/site-packages目录下,利用命令行安装即可
3、安装ffmpeg、ImageMagick
ffmpeg包:不然无法输出 mp4/m4v/mov/等格式的视频,该包比较复杂,需要配置变量环境,具体操作可以看看这个博客:
https://baijiahao.baidu.com/s?id=1660327134602942057&wfr=spider&for=pc
ImageMagick包:如果你要创建GIF,需要安装这个包ImageMagick,安装方法与上述类似。
二、官方数据画图
上述准备都做好了,那就可以开始画图了,利用官方提供的数据,直接加载就可以,我的数据下载没成功,所以自己上传数据绘图,等下回讲怎么自己上传数据。
#加载包
import bar_chart_race as bcr
#下载数据
df = bcr.load_dataset('covid19_tutorial')
#生成GIF图像
bcr.bar_chart_race(df, 'covid19_horiz.gif')
#生成MP4
bcr.bar_chart_race(df, 'covid19_horiz.MP4')
生成的GIF
生成的MP4
三、自己的数据画图
如果是自己的数据,要进行一定的处理,达到画图格式,不然会报错。
#读取数据
df = pd.read_csv('data.csv')
#格式处理,需要把日期date转换成索引,不能作为单独一列
df = df.set_index(keys='date')
作者也提供了两个处理数据的函数
bcr.prepare_wide_data bcr.prepare_long_data
原始数据
处理后数据(date转换成了索引)
四、图形美化
作者还提供了很多参数,对图形进行调整和美化,输出的图形更漂亮
1、横转纵 Vertical bars
#orientation='v',.gif变成MP4即可输出视频 bcr.bar_chart_race(df, 'covid19_horiz.gif', orientation='v')
2、升序排序
# 排序方式,sort='asc'-升序 bcr.bar_chart_race(df, 'covid19_horiz.gif', sort='asc')
3、类目数限制,此处设置为最多出现6条
# 设置最多能显示的条目数 n_bars=6 bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)
4、设置展示类目
# 选取如下5个国家的数据 fixed_order bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])
5、固定坐标轴
#设置数值的最大值,固定数值轴fixed_max bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)
6、改变图像帧数
#图像帧数,数值越小,越不流畅。越大,越流畅。默认为10比较流畅,改为3就有些卡顿了 bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)
7、设置帧率,默认为500ms
# 设置20帧的总时间,此处为200ms bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)
8、设置每帧增加的标签时间,默认为False
# 输出gif bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)
9、绘图属性设置
# figsize-设置画布大小,默认(6, 3.5) # dpi-图像分辨率,默认144 # label_bars-显示柱状图的数值信息,默认为True # period_label-显示时间标签信息,默认为True # title-图表标题 bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False, period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'}, title='COVID-19 Deaths by Country')
10、配置标签文字大小
# bar_label_size-柱状图标签文字大小 # tick_label_size-坐标轴标签文字大小 # title_size-标题标签文字大小 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_label_size=4, tick_label_size=5, title='COVID-19 Deaths by Country', title_size='smaller')
11、全局字体属性设置
# shared_fontdict-全局字体属性
bcr.bar_chart_race(df, 'covid19_horiz.gif',
title='COVID-19 Deaths by Country',
shared_fontdict={'family': 'Helvetica', 'weight': 'bold',
'color': 'rebeccapurple'})
12、透明度,边框等设置
# bar_kwargs-条形图属性设置参数 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})
13、日期格式设置
# 设置日期格式,默认为'%Y-%m-%d' bcr.bar_chart_race(df, 'covid19_horiz.gif', period_fmt='%b %-d, %Y')
14、改日期标签为数值格式
# 设置日期标签为数值
bcr.bar_chart_race(df.reset_index(drop=True),
'covid19_horiz.gif', interpolate_period=True,
period_fmt='Index value - {x:.2f}')
15、添加汇总统计
#设置文本位置、数值、大小、颜色等
def summary(values, ranks):
total_deaths = int(round(values.sum(), -2))
s = f'Total Deaths - {total_deaths:,.0f}'
return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8}
# 添加文本
bcr.bar_chart_race(df,
'covid19_horiz.gif',
period_summary_func=summary
16、添加垂直条参考线(平均值、分位数等)
# 设置垂直条数值,分位数
def func(values, ranks):
return values.quantile(.9)
# 添加垂直条
bcr.bar_chart_race(df, 'covid19_horiz.gif',
perpendicular_bar_func=func)
17、设置柱状图颜色
'dark12' is the default colormap. If there are more than 10 columns, then the default colormap will be 'dark24'
# 设置柱状图颜色 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent')
18、颜色不重复
#filter_column_colors保证颜色不重复
bcr.bar_chart_race(df, 'covid19_horiz.gif',
cmap='accent',
filter_column_colors=True)
19、中文支持配置
中文配置只需在第三方库的_make_chart.py文件中,加入如下三行代码。
#中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] #Windows plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] #Mac plt.rcParams['axes.unicode_minus'] = False
20、自定义颜色
此外通过在「_colormaps.py」文件中添加颜色信息,经cmap引用,即可自定义配置颜色。
colormaps = {
"new_colors": [
'#ff812c',
'#ff5a5a',
'#00c5d2',
'#a64dff',
'#4e70f0',
'#f95dba',
'#ffce2b']}
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27