作者:小伍哥
来源:AI入门学习
上次出了一个在网站「Flourish」画动态条形图的文章【动态条形图视频教程】,需要登录网址很多人可能觉得不方便,现在有大佬出了个python包,只需几行代码就能搞定动态条形图,非常强大,给大家分享下。
一、前期准备工作
1、官方参考文档
GitHub :https://github.com/dexplo/bar_chart_race
说明文档:https://www.dexplo.org/bar_chart_race/
2、软件安装(该安装方法只能安装0.1版本)
pip install bar_chart_race conda install -c conda-forge bar_chart_race
0.2版本需要到github安装
压缩包解压到软件安装目录的/site-packages目录下,利用命令行安装即可
3、安装ffmpeg、ImageMagick
ffmpeg包:不然无法输出 mp4/m4v/mov/等格式的视频,该包比较复杂,需要配置变量环境,具体操作可以看看这个博客:
https://baijiahao.baidu.com/s?id=1660327134602942057&wfr=spider&for=pc
ImageMagick包:如果你要创建GIF,需要安装这个包ImageMagick,安装方法与上述类似。
二、官方数据画图
上述准备都做好了,那就可以开始画图了,利用官方提供的数据,直接加载就可以,我的数据下载没成功,所以自己上传数据绘图,等下回讲怎么自己上传数据。
#加载包 import bar_chart_race as bcr #下载数据 df = bcr.load_dataset('covid19_tutorial') #生成GIF图像 bcr.bar_chart_race(df, 'covid19_horiz.gif') #生成MP4 bcr.bar_chart_race(df, 'covid19_horiz.MP4')
生成的GIF
生成的MP4
三、自己的数据画图
如果是自己的数据,要进行一定的处理,达到画图格式,不然会报错。
#读取数据 df = pd.read_csv('data.csv') #格式处理,需要把日期date转换成索引,不能作为单独一列 df = df.set_index(keys='date') 作者也提供了两个处理数据的函数 bcr.prepare_wide_data bcr.prepare_long_data
原始数据
处理后数据(date转换成了索引)
四、图形美化
作者还提供了很多参数,对图形进行调整和美化,输出的图形更漂亮
1、横转纵 Vertical bars
#orientation='v',.gif变成MP4即可输出视频 bcr.bar_chart_race(df, 'covid19_horiz.gif', orientation='v')
2、升序排序
# 排序方式,sort='asc'-升序 bcr.bar_chart_race(df, 'covid19_horiz.gif', sort='asc')
3、类目数限制,此处设置为最多出现6条
# 设置最多能显示的条目数 n_bars=6 bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)
4、设置展示类目
# 选取如下5个国家的数据 fixed_order bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])
5、固定坐标轴
#设置数值的最大值,固定数值轴fixed_max bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)
6、改变图像帧数
#图像帧数,数值越小,越不流畅。越大,越流畅。默认为10比较流畅,改为3就有些卡顿了 bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)
7、设置帧率,默认为500ms
# 设置20帧的总时间,此处为200ms bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)
8、设置每帧增加的标签时间,默认为False
# 输出gif bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)
9、绘图属性设置
# figsize-设置画布大小,默认(6, 3.5) # dpi-图像分辨率,默认144 # label_bars-显示柱状图的数值信息,默认为True # period_label-显示时间标签信息,默认为True # title-图表标题 bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False, period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'}, title='COVID-19 Deaths by Country')
10、配置标签文字大小
# bar_label_size-柱状图标签文字大小 # tick_label_size-坐标轴标签文字大小 # title_size-标题标签文字大小 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_label_size=4, tick_label_size=5, title='COVID-19 Deaths by Country', title_size='smaller')
11、全局字体属性设置
# shared_fontdict-全局字体属性 bcr.bar_chart_race(df, 'covid19_horiz.gif', title='COVID-19 Deaths by Country', shared_fontdict={'family': 'Helvetica', 'weight': 'bold', 'color': 'rebeccapurple'})
12、透明度,边框等设置
# bar_kwargs-条形图属性设置参数 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})
13、日期格式设置
# 设置日期格式,默认为'%Y-%m-%d' bcr.bar_chart_race(df, 'covid19_horiz.gif', period_fmt='%b %-d, %Y')
14、改日期标签为数值格式
# 设置日期标签为数值 bcr.bar_chart_race(df.reset_index(drop=True), 'covid19_horiz.gif', interpolate_period=True, period_fmt='Index value - {x:.2f}')
15、添加汇总统计
#设置文本位置、数值、大小、颜色等 def summary(values, ranks): total_deaths = int(round(values.sum(), -2)) s = f'Total Deaths - {total_deaths:,.0f}' return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8} # 添加文本 bcr.bar_chart_race(df, 'covid19_horiz.gif', period_summary_func=summary
16、添加垂直条参考线(平均值、分位数等)
# 设置垂直条数值,分位数 def func(values, ranks): return values.quantile(.9) # 添加垂直条 bcr.bar_chart_race(df, 'covid19_horiz.gif', perpendicular_bar_func=func)
17、设置柱状图颜色
'dark12' is the default colormap. If there are more than 10 columns, then the default colormap will be 'dark24'
# 设置柱状图颜色 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent')
18、颜色不重复
#filter_column_colors保证颜色不重复 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent', filter_column_colors=True)
19、中文支持配置
中文配置只需在第三方库的_make_chart.py文件中,加入如下三行代码。
#中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] #Windows plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] #Mac plt.rcParams['axes.unicode_minus'] = False
20、自定义颜色
此外通过在「_colormaps.py」文件中添加颜色信息,经cmap引用,即可自定义配置颜色。
colormaps = { "new_colors": [ '#ff812c', '#ff5a5a', '#00c5d2', '#a64dff', '#4e70f0', '#f95dba', '#ffce2b']}
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03