京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国联通推出“流量银行”抢滩流量市场
在近期举行的移动互联网流量创新峰会上,2014年中国联通正式推出“流量银行”,以流量为纽带,以技术和数据为基石,“颠覆性”推出包含用户、企业和运营商在内的流量2.0生态系统。
简评
微信等OTT压迫下,运营商大数据运营将是未来方向
移动互联网时代,微信等OTT压迫下,电信运营商有逐渐沦为管道的趋势下,传统语音和短信收入不断,中国联通2014年中报显示,其服务收入中语音部分占比高达59.5%,数据流量收入同比提升50%。传统的收入模式面临巨大挑战,运营商思变是必然选择,我们认为联通的“流量银行”的推出可以算作运营商思变的标志性事件之一,未来运营商将利用自身优势不断革新创造价值。除基础设施外,运营商最大的财富是其拥有的海量数据,包括用户号码身份特征、消费特征、位置轨迹、非流量业务行为特征等,利用这些数据进行对内及对外的大数据运营将是运营商扩大自身价值的不二选择,而在此之前对于数据收集、管理、应用的投入也将不断增加。
公司在电信大数据市场领域份额不断扩大
公司涉及大数据收集、管理、应用、运营全产业链,在电信大数据领域市场地位及技术均处于领先地位。我们将运营商大数据市场分为大数据项目和运营市场。大数据项目(主要指收集、管理、应用)市场份额方面,公司在联通占比超过80%,电信占比超30%,移动占比超过10%。公司今年中标移动大数据核心项目,可谓技术实力获得移动认可的标志性事件,有望改变公司未来在移动大数据市场的竞争格局,打破亚信联创的垄断地位。预计三家运营商明年在大数据领域的投资额度接近30亿,未来每年投入增速有望超过20%。大数据运营市场方面,公司不断尝试以各种方式参与运营项目,虽然目前尚未对收入产生大的影响,但未来尝试不会停止,想象空间巨大。另外,由于大数据运营最终涉及各垂直行业,运营商直接参与的难度很大,以有偿分享数据资源的方式开放合作大数据运营市场将是最佳选择。
金融BI将成比翼齐飞之形势
计世资讯数据显示电信和金融是目前对大数据投入最大的两个领域,占比超过60%。近年来公司大力拓展金融大数据领域布局,两年来连续并购科瑞明及屹通信息。另外,公司还有自身的金融事业部,预计三个部分明年将贡献7000w以上利润。金融BI市场相对电信市场更加分散,公司未来希望打造金融和电信大数据比翼齐飞的局面,若想达到这一目标,金融BI市场仍需不断加强和拓展,而利用上市公司平台进行并购将是扩大市场份额最快的方式。
产品化提升毛利率,募投项目拖累管理费用率.
今年8月份公司发布了东方国信大数据产品线核心产品,涵盖了大数据采集设备,大数据处理专用设备、大数据存储及计算、大数据管控等各个方面,这些产品已经在各个行业客户中得到了成功应用,未来公司将大力贯彻产品化策略,这将有效提高公司产品标准化程度,降低二次开发频率,从而提高公司毛利率。另外,由于公司上市募投项目导致的研发费用资本化的摊销,近年来管理费用率不断上升,到今年年底公司5个募投项目将全部完工,研发费用资本化将见顶,管理费用率未来有望逐渐步入下降通道。
盈利预测与投资建议.
除电信与金融大数据市场外,公司还通过内生和外延等方式渗透到工业、能源等大数据市场。未来电信和金融两领域将长期处于大数据投入景气期,整体市场增速有望保持在20%以上,公司在两个市场份额有望不断提升,预计公司2014~2016年收入5.86、7.54、9.76亿,增速分别为25.36%、28.50%、29.47%。EPS分别为0.51、0.70、1.05,对应估值分别为45.10、32.86、21.90,强烈推荐,维持“买入”评级,6个月目标价提高到38
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06