
中国联通推出“流量银行”抢滩流量市场
在近期举行的移动互联网流量创新峰会上,2014年中国联通正式推出“流量银行”,以流量为纽带,以技术和数据为基石,“颠覆性”推出包含用户、企业和运营商在内的流量2.0生态系统。
简评
微信等OTT压迫下,运营商大数据运营将是未来方向
移动互联网时代,微信等OTT压迫下,电信运营商有逐渐沦为管道的趋势下,传统语音和短信收入不断,中国联通2014年中报显示,其服务收入中语音部分占比高达59.5%,数据流量收入同比提升50%。传统的收入模式面临巨大挑战,运营商思变是必然选择,我们认为联通的“流量银行”的推出可以算作运营商思变的标志性事件之一,未来运营商将利用自身优势不断革新创造价值。除基础设施外,运营商最大的财富是其拥有的海量数据,包括用户号码身份特征、消费特征、位置轨迹、非流量业务行为特征等,利用这些数据进行对内及对外的大数据运营将是运营商扩大自身价值的不二选择,而在此之前对于数据收集、管理、应用的投入也将不断增加。
公司在电信大数据市场领域份额不断扩大
公司涉及大数据收集、管理、应用、运营全产业链,在电信大数据领域市场地位及技术均处于领先地位。我们将运营商大数据市场分为大数据项目和运营市场。大数据项目(主要指收集、管理、应用)市场份额方面,公司在联通占比超过80%,电信占比超30%,移动占比超过10%。公司今年中标移动大数据核心项目,可谓技术实力获得移动认可的标志性事件,有望改变公司未来在移动大数据市场的竞争格局,打破亚信联创的垄断地位。预计三家运营商明年在大数据领域的投资额度接近30亿,未来每年投入增速有望超过20%。大数据运营市场方面,公司不断尝试以各种方式参与运营项目,虽然目前尚未对收入产生大的影响,但未来尝试不会停止,想象空间巨大。另外,由于大数据运营最终涉及各垂直行业,运营商直接参与的难度很大,以有偿分享数据资源的方式开放合作大数据运营市场将是最佳选择。
金融BI将成比翼齐飞之形势
计世资讯数据显示电信和金融是目前对大数据投入最大的两个领域,占比超过60%。近年来公司大力拓展金融大数据领域布局,两年来连续并购科瑞明及屹通信息。另外,公司还有自身的金融事业部,预计三个部分明年将贡献7000w以上利润。金融BI市场相对电信市场更加分散,公司未来希望打造金融和电信大数据比翼齐飞的局面,若想达到这一目标,金融BI市场仍需不断加强和拓展,而利用上市公司平台进行并购将是扩大市场份额最快的方式。
产品化提升毛利率,募投项目拖累管理费用率.
今年8月份公司发布了东方国信大数据产品线核心产品,涵盖了大数据采集设备,大数据处理专用设备、大数据存储及计算、大数据管控等各个方面,这些产品已经在各个行业客户中得到了成功应用,未来公司将大力贯彻产品化策略,这将有效提高公司产品标准化程度,降低二次开发频率,从而提高公司毛利率。另外,由于公司上市募投项目导致的研发费用资本化的摊销,近年来管理费用率不断上升,到今年年底公司5个募投项目将全部完工,研发费用资本化将见顶,管理费用率未来有望逐渐步入下降通道。
盈利预测与投资建议.
除电信与金融大数据市场外,公司还通过内生和外延等方式渗透到工业、能源等大数据市场。未来电信和金融两领域将长期处于大数据投入景气期,整体市场增速有望保持在20%以上,公司在两个市场份额有望不断提升,预计公司2014~2016年收入5.86、7.54、9.76亿,增速分别为25.36%、28.50%、29.47%。EPS分别为0.51、0.70、1.05,对应估值分别为45.10、32.86、21.90,强烈推荐,维持“买入”评级,6个月目标价提高到38
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19