京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言做地图上的分析
R和ggplot可视化功能非常强大,了解了一下其中的地图做法,发现R做世界地图、美国地图非常容易,但做中国地图就太麻烦了,需要自己DIY。
DIY也有多种方式,但网络上各种帖子教程的出图效果都不太理想,达不到工作用要求。下面是我的摸索过程,记录如下备忘,也请教于R老师们。
0、引子
R里有个绘制地图的maps包,加载后即可绘制地图,试一下以下命令:
library(maps)
map()
即可画出一个世界地图。再试试:
map("state")
map("county")
可分别画出美国分州和分county的地图,真是不费吹灰之力。
可是,要画一幅中国地图,就没有这么容易了,需要先加载一个mapdata包:
library(mapdata)
map("china")
但发现居然还是没有重庆的地图,太坑爹了,没法用,只有自己构造中国地图了。下面开始进入正题,如何用R绘制中国分省热力地图。
1、准备地图数据
先要找到中国地图数据文件。到国家基础地理信息中心的网站(http://nfgis.nsdi.gov.cn)下载官方空间文件,但这个政府网站总是打不开!你可到微信公众号 iamExcelPro 发送 shapefile 获得下载地址,我是雷锋。解压到 c:/rstudy 目录,有3个文件,都是需要的。
加载maptools包,读取空间文件:
library("maptools")
china_map = readShapePoly("c:/rstudy/bou2_4p.shp") # 读取地图空间数据
plot一下看看,是一幅中国地图,有重庆,还包括南海的岛屿,政府数据就是严谨一些:
plot(china_map)
但地图投影方式不对,看起来太扁了,完全不是我们常见的昂首雄鸡状。
加载ggplot2包,用ggplot绘制,并使用polyconic投影方式,显示正常。
library(ggplot2)
ggplot(china_map,aes(x=long,y=lat,group=group)) +
geom_polygon(fill="white",colour="grey") +
coord_map("polyconic")
现在地图是可用的了,但还需要加载和拼接行政信息,以便能与业务数据映射。
x <- china_map@data #读取行政信息
xs <- data.frame(x,id=seq(0:924)-1) #含岛屿共925个形状
library(ggplot2)
china_map1 <- fortify(china_map) #转化为数据框
library(plyr)
china_map_data <- join(china_map1, xs, type = "full") #合并两个数据框
提示:Joining by: id
看不懂?没关系,过了就行。
2、准备业务数据
网上教程居然都是在命令行里输入数据,也很坑爹。我们还是从Excel表格转存来得方便。
按以下格式准备好指标数据,并存为csv格式文件。不直接读取xlsx文件是因为需要装的包比较麻烦。
注意第1列的字段名为NAME,各省名称也是要固定一致的,是为了和地图数据框里的省名一致,便于合并。各省名称是用以下命令查看并记下的。
> unique(china_map@data$NAME)
[1] 黑龙江省 内蒙古自治区 新疆维吾尔自治区 吉林省
[5] 辽宁省 甘肃省 河北省 北京市
[9] 山西省 天津市 陕西省 宁夏回族自治区
[13] 青海省 山东省 西藏自治区 河南省
[17] 江苏省 安徽省 四川省 湖北省
[21] 重庆市 上海市 浙江省 湖南省
[25] 江西省 云南省 贵州省 福建省
[29] 广西壮族自治区 台湾省 广东省 香港特别行政区
[33] 海南省
下面读取业务指标数据,并与地图数据合并:
mydata <- read.csv("c:/rstudy/geshengzhibiao.csv") #读取指标数据,csv格式
china_data <- join(china_map_data, mydata, type="full") #合并两个数据框
提示:Joining by: NAME
3、绘制地图
现在可以开始试试画填色地图了:
ggplot(china_data, aes(x = long, y = lat, group = group, fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") #指定投影方式为polyconic,获得常见视角中国地图
好,看到填色地图了,但图中的背景色、坐标轴、经纬线都是不需要的,图例也可以放到左下角,用theme命令清除:
ggplot(china_data, aes(x = long, y = lat, group = group,fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") + #指定投影方式为polyconic,获得常见视角中国地图
theme( #清除不需要的元素
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position = c(0.2,0.3)
)
4、添加省名标签
有时候需要显示省名标签,特别是给老领导看。可根据每个省形状的经纬度平均值求近似中心位置,标注省名。
midpos <- function(x) mean(range(x,na.rm=TRUE))#取形状内的平均坐标
centres <- ddply(china_data,.(province),colwise(midpos,.(long,lat)))
ggplot(china_data,aes(long,lat))+ #此处语法与前面不同,参考ggplot2一书P85
geom_polygon(aes(group=group,fill=zhibiao),colour="black")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(label=province),data=centres) +
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
但发现海南两个字跑到南海去了,不行。下面改使用省会城市的经纬度数据标注省名。
province_city <- read.csv("c:/rstudy/chinaprovincecity.csv") #读取省会城市坐标
ggplot(china_data,aes(long,lat))+
geom_polygon(aes(group=group,fill=zhibiao),colour="grey60")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(x = jd,y = wd,label = province), data =province_city)+
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
至此,终于DIY绘制出了一份中国分省的热力地图,真是够折腾够找虐的,好在图形很精准,以后也可以复用代码。
所以结论就是,一般非专业用户还是使用BingMap、PowerMap、Tableau或者《用地图说话》中的Excel模板,直接填数据出地图吧,其中Excel模板方式是最简单、便携,office协同性最好的。
如果你想用这些代码出图,可准备好用到的3个文件到相应目录,其中一个是你的业务指标csv文件,一步步运行以上代码,应该就可得到一幅中国地图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22