
R语言做地图上的分析
R和ggplot可视化功能非常强大,了解了一下其中的地图做法,发现R做世界地图、美国地图非常容易,但做中国地图就太麻烦了,需要自己DIY。
DIY也有多种方式,但网络上各种帖子教程的出图效果都不太理想,达不到工作用要求。下面是我的摸索过程,记录如下备忘,也请教于R老师们。
0、引子
R里有个绘制地图的maps包,加载后即可绘制地图,试一下以下命令:
library(maps)
map()
即可画出一个世界地图。再试试:
map("state")
map("county")
可分别画出美国分州和分county的地图,真是不费吹灰之力。
可是,要画一幅中国地图,就没有这么容易了,需要先加载一个mapdata包:
library(mapdata)
map("china")
但发现居然还是没有重庆的地图,太坑爹了,没法用,只有自己构造中国地图了。下面开始进入正题,如何用R绘制中国分省热力地图。
1、准备地图数据
先要找到中国地图数据文件。到国家基础地理信息中心的网站(http://nfgis.nsdi.gov.cn)下载官方空间文件,但这个政府网站总是打不开!你可到微信公众号 iamExcelPro 发送 shapefile 获得下载地址,我是雷锋。解压到 c:/rstudy 目录,有3个文件,都是需要的。
加载maptools包,读取空间文件:
library("maptools")
china_map = readShapePoly("c:/rstudy/bou2_4p.shp") # 读取地图空间数据
plot一下看看,是一幅中国地图,有重庆,还包括南海的岛屿,政府数据就是严谨一些:
plot(china_map)
但地图投影方式不对,看起来太扁了,完全不是我们常见的昂首雄鸡状。
加载ggplot2包,用ggplot绘制,并使用polyconic投影方式,显示正常。
library(ggplot2)
ggplot(china_map,aes(x=long,y=lat,group=group)) +
geom_polygon(fill="white",colour="grey") +
coord_map("polyconic")
现在地图是可用的了,但还需要加载和拼接行政信息,以便能与业务数据映射。
x <- china_map@data #读取行政信息
xs <- data.frame(x,id=seq(0:924)-1) #含岛屿共925个形状
library(ggplot2)
china_map1 <- fortify(china_map) #转化为数据框
library(plyr)
china_map_data <- join(china_map1, xs, type = "full") #合并两个数据框
提示:Joining by: id
看不懂?没关系,过了就行。
2、准备业务数据
网上教程居然都是在命令行里输入数据,也很坑爹。我们还是从Excel表格转存来得方便。
按以下格式准备好指标数据,并存为csv格式文件。不直接读取xlsx文件是因为需要装的包比较麻烦。
注意第1列的字段名为NAME,各省名称也是要固定一致的,是为了和地图数据框里的省名一致,便于合并。各省名称是用以下命令查看并记下的。
> unique(china_map@data$NAME)
[1] 黑龙江省 内蒙古自治区 新疆维吾尔自治区 吉林省
[5] 辽宁省 甘肃省 河北省 北京市
[9] 山西省 天津市 陕西省 宁夏回族自治区
[13] 青海省 山东省 西藏自治区 河南省
[17] 江苏省 安徽省 四川省 湖北省
[21] 重庆市 上海市 浙江省 湖南省
[25] 江西省 云南省 贵州省 福建省
[29] 广西壮族自治区 台湾省 广东省 香港特别行政区
[33] 海南省
下面读取业务指标数据,并与地图数据合并:
mydata <- read.csv("c:/rstudy/geshengzhibiao.csv") #读取指标数据,csv格式
china_data <- join(china_map_data, mydata, type="full") #合并两个数据框
提示:Joining by: NAME
3、绘制地图
现在可以开始试试画填色地图了:
ggplot(china_data, aes(x = long, y = lat, group = group, fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") #指定投影方式为polyconic,获得常见视角中国地图
好,看到填色地图了,但图中的背景色、坐标轴、经纬线都是不需要的,图例也可以放到左下角,用theme命令清除:
ggplot(china_data, aes(x = long, y = lat, group = group,fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") + #指定投影方式为polyconic,获得常见视角中国地图
theme( #清除不需要的元素
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position = c(0.2,0.3)
)
4、添加省名标签
有时候需要显示省名标签,特别是给老领导看。可根据每个省形状的经纬度平均值求近似中心位置,标注省名。
midpos <- function(x) mean(range(x,na.rm=TRUE))#取形状内的平均坐标
centres <- ddply(china_data,.(province),colwise(midpos,.(long,lat)))
ggplot(china_data,aes(long,lat))+ #此处语法与前面不同,参考ggplot2一书P85
geom_polygon(aes(group=group,fill=zhibiao),colour="black")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(label=province),data=centres) +
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
但发现海南两个字跑到南海去了,不行。下面改使用省会城市的经纬度数据标注省名。
province_city <- read.csv("c:/rstudy/chinaprovincecity.csv") #读取省会城市坐标
ggplot(china_data,aes(long,lat))+
geom_polygon(aes(group=group,fill=zhibiao),colour="grey60")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(x = jd,y = wd,label = province), data =province_city)+
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
至此,终于DIY绘制出了一份中国分省的热力地图,真是够折腾够找虐的,好在图形很精准,以后也可以复用代码。
所以结论就是,一般非专业用户还是使用BingMap、PowerMap、Tableau或者《用地图说话》中的Excel模板,直接填数据出地图吧,其中Excel模板方式是最简单、便携,office协同性最好的。
如果你想用这些代码出图,可准备好用到的3个文件到相应目录,其中一个是你的业务指标csv文件,一步步运行以上代码,应该就可得到一幅中国地图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27