
[从产品角度学EXCEL 02]-EXCEL里的树形结构
前言请看:
0 为什么要关注Excel的本质
1 excel是怎样运作的
本文仅由尾巴本人发布于特定网站。不接受任何无授权转载,如需转载,请先联系我,非常感谢。
2 Excel里的树形结构
这段时间,上海街边的树上陆陆续续长出了嫩芽,放眼望去有各种层次的绿色,格外好看。我们今天的话题,恰好也与树有关。只不过,树都是往天空伸展枝叶的,而我们这里讨论的‘树’,却是由根部出发,逐行逐行往下延展、伸展。
还记得上一个章节里,我们对一个excel文件解压缩后,发现了若干个xml文件吗?
xml本质上是一种使用树形结构存储信息的文档。它由一个根节点root开始,逐层逐层长枝节,并给每一层都打了个标签,让xml解析器可以快速定位信息的内容。而每一层以及每一个底部的节点,都是这些信息的一个分类属性。我们了解了它们的属性和层级,也就了解这颗结构树长成什么样子。
正因为xml的结构与层级是如此重要,在进一步讲单元格之前,我们很有必要先剖析看看excel xml树的结构,从大体上再来理解一下excel储存文件的方式。
需要注意的是,这一章节大概是整个系列里涉及最多编程的章节了。如果各位对编程不是特别感兴趣,可以先跳过这一节,去看后面的内容。不过按照我个人的经验来说,不管你是用excel做一些简单的数据处理,还是想要在数据分析行业里走得稳妥一些,了解了解编程,只会有好处而没有坏处。尤其是编程的一些思想,如妥善地设计接口,分隔各个功能块等,即使你用excel处理数据,这些也对你十分有好处。
言归正传吧。我们回过头来再看看excel解压缩以后的xml文件。
让我们随意打开一个xml文件,一串串密密麻麻的字符就这样跳了出来。
对于不熟悉xml架构的人来说,我们只会看到眼花缭乱的括号,等号,引号。但是如果你对xml有点理解,你就会知道,这一系列的标点符号框起了一个个xml的数据结构。
对于xml来说,每一个层级都是由<标签 属性=ABC>内容信息</标签>构成的。有的内容信息里又会再次嵌套一层标签层级,重重相叠,从根部开始向下延展出了无数枝叶,构成了一棵看似错综复杂,却是层次分明的xml树。人们只要定位到某一个枝叶,就可以迅速把这个枝叶下的特定信息取出来。而要搞懂这棵xml树长什么样子,首先就要搞懂说这棵树是有哪些层级,各个层级叫什么,有什么内容。
但是各位再回顾看看上面的截图,一长串一长串的代码,你当然可以一个个去判断说,啊,根标签从worksheet开始,下面有selection层级,有f层级等等,但是这样子做,不仅低效,而且会有遗漏。
请各位在学习excel时,随时记住一个原则,那就是可以不要手工去做的事情,就不要手工去做。宁愿自己脑子废点脑力构思最优方法,也不要直接就开始机械的作业。
那么,在这里,面临这个要人工一个个看标签的艰巨任务时,我们该如何是好呢?
在这里跟大家再普及一个概念的是,xml嘛,除了微软在用于office系列文档储存格式以外,它还广泛应用于各种网页设计领域。而在网页获取信息这一块,我们天然有很多工具可以通过读取html或者xml源代码,解析它们的结构,进行数据提取工作(高级点叫法即网络爬虫)
所以对于这里的excel xml源文件,我们自然可以应用各种爬虫工具,把xml的框架给找出来。
我 用的比较熟的应该是R语言的rvest包爬虫了,查了一下它的文档,有一个叫xml_structure的,可以直接把xml文件的标签层次给读出来,而 xml_nodes/xml_attr等,又可以把里面特定的标签内容给分层读出来。那么写一段代码,帮我把excel的xml源文件里的层级与内容弄出 来,那就省了我很大的心力啦^^
因为R语言代码并不是我们的重点,所以我把源代码放在文章末尾的扩展阅读里了,有需要的可以去看看,也可以用其他语言写写。有的时候只要学会一点点的编程,就能大大的改善各位的工作效率。要用好工具而不是被工具玩,是我希望在这系列excel教程里告诉大家的一个点。
那么言归正传。请各位看看下面这个用R语言跑出来的csv文件截图。
左列是我们的标签名,右列是我们标签里面包含的文本。通过这个文件,我们就可以很容易知道各个标签里存放了什么文本信息。我们会发现row下面是一串串的c/v/f。而c与v的信息几乎完全一样。
另外,在r里,我们可以通过xml_structure输出xml文件的结构。这两个结合起来,我为各位绘制了一张sheet1.xml的树形结构图:
各位可以看到,在worksheet文件夹里的sheet1.xml,是在sheetdata里按照row为标签层级,存放了若干行的数据。而行又以 c(cell)为导向,存放了单元格的v (value)和f(函数)。有多少行,在sheet1.xml里就有多少row,一个row有若干个有效单元格,就会有若干个c。
从这个角度看excel,会不会对excel的产品设计层次有了进一步的理解呢?
另外,上面的截图没有出示的一点是,在worksheet这个文件夹里,数字是直接存在各个sheetxxx.xml里的,而字符类文本,却是单独存放在外面的SharedString.xml里。
嘿嘿,数字和文本的存放格式不一样,各位想到了什么?有没有虎躯一震,想到了excel里因为数字和文本的不同,带来的各种不便?
在前面啰嗦完为什么要写这个系列,以及excel是怎么工作以后,我们终于把拼图最重要的一块——解读xml补上了。
R语言解析XML源代码:
setwd("~/excel/")
library(rvest)
#代码用于《从产品角度学EXCEL》系列文章,XML解析
# read xml in zip files
get_xmllist<-function(access){
list<-list.files(access,full.names=TRUE,pattern = "xml$",recursive = TRUE)
list_name<-gsub(as.character(access),"",list)
list_name<-gsub("\\/|\\.|\\[|\\]","-",list_name)
list_name<-gsub("\\-\\-","-",list_name)
list<-data.frame(list,list_name,stringsAsFactors = FALSE)
list
}
# read xml structure
get_structure<-function(xmlfile){
data<-xml(xmlfile,encoding="UTF-8")
data<-data %>% html_nodes("*")
output<-cbind(node_names=data %>% html_tag(),
node_text=data %>% html_text())
output<-data.frame(output)
output
}
write_result<-function(dataframe,name){
write.csv(dataframe,paste0("./Output/",name,".csv"),row.names=FALSE)
}
#use these three function
xml_list<-get_xmllist("./sample u.xlsx/")
for (i in 1:nrow(xml_list)){
data<-get_structure(xml_list$list[i])
write_result(data,xml_list$list_name[i])
}
#write the structure
xml_structure(html(xml_list$list[8]))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15