
运营人必备的7大技能:数据分析能力是未来运营的分水岭
但也是很多刚进入运营领域的新人一个头疼问题,因为他所涉及到的数据分析方法、方法论、逻辑分析能力以及一些工具的使用,而且一堆数据也是很多运营人员不愿面对的。本章节我们就从如何获取数据、如何分析数据以及一款产品都关注哪些数据维度。
一、数据从哪里获取
在我们分析数据之前,就必须得有数据供我们分析,所以我们就得拿到数据,怎么拿到呢?
数据的来源渠道主要有两种:
自有数据分析系统——公司自有的数据是最源质化的数据,也是最可靠、最全面的。一般而言,有条件的情况下都是以内部数据为准;
第三方数据分析工具,这个是借助外部工具获得数据。
下面给大家介绍主要5款的数据分析工具:
1.友盟
支持iOS、Android应用数据统计分析
2.growingio
growingio强大的地方在于无需埋点,就可以获取并分析全面、实时的用户行为数据,以优化产品体验,实现精益化运营。
3.应用雷达
仅针对iOS,查看App Store总榜和分类排名。查看产品在App Store 里的搜索度得分,评判ASO效果的标准之一。
4.百度移动统计
支持ios和android平台。另外,开发者在嵌入统计SDK后,可以对自家产品进行较为全面的监控,包括用户行为、用户属性、地域分布、终端分析等。
5.酷传
仅支持android平台应用监控。开发者可以查看应用在主流市场下载量、排名、评分评论、关键词排名等数据,还能系统地与同类竞品进行数据对比。
当然了,数据分析工具不止这5款,如果你们正在使用其他的,也是可以的。使用分析工具我们可以得到以下内容:
记录那些点击信息,包括没有与网站产生交互的信息;可直接生成链接的百分比,点击分布图和热力图;可统计用户的悬停,将用户潜在行为可视化
获取数据的方式其实多种多样,关键在于,作为运营人员要了解什么样的数据是重要的,对于这些数据的前后关联,是怎样的,这是一个联动的过程,不是一个单一的行为。
有了这些数据之后,我们该怎么去分析这些数据呢?哪些是可以为我们所用的额,又有哪些是可以剔除掉的。
二、如何分析现有的数据
从第三方数据分析工具或者自家的分析后台拿到这些数据后 ,该怎么去分析呢?我相信很多运营人在拿到数据时,都是没多少思路的。要么胡子眉毛一把抓,要么无从下手。这都是缺少分析思路的表现,需要宏观的方法论和微观的方法来指导。
在上几期的文章中,在艺林小宇的文章《「后产品时代的运营之道」数据分析的那些方法论》中,罗列在我们进行数据分析时经常会使用到方法论,这些方法论在我们进行数据分析时扮演宏观指导的角色。所以说在我们进行数据分析时,应该先找到适合自己的方法论进行指导。主要会用到的方法论:
数据分析的方法论很多,这里不能一一列举;没有最好的方法论,只有最合适的。下面我详细介绍一下 AARRR 方法论,对于精益化运营、业务增长的问题,这个方法论非常契合。
对于互联网产品而言,用户具有明显的生命周期特征,我以一个APP为例阐述一下。
首先通过各种线上、线下的渠道获取新用户,下载安装APP。安装完APP后,通过运营手段激活用户;比如说首单免费、代金券、红包等方式。通过一系列的运营使部分用户留存下来,并且给企业带营收。在这个过程中,如果用户觉得这个产品不错,可能推荐给身边的人;或者通过红包等激励手段鼓励分享到朋友圈等等。需要注意的是,这5个环节并不是完全按照上面顺序来的;运营可以根据业务需要灵活应用。AARRR的五个环节都可以通过数据指标来衡量与分析,从而实现精益化运营的目的;每个环节的提升都可以有效增长业务。
在使用这些数据分析方法论要明确他们的作用:
理顺分析思路,确保数据分析结构体系化。
把问题分解成相关联的部分,并显示它们之间的关系。
为后续数据分析的开展指引方向。
确保分析结果的有效性及正确性。
再比如,我们在分析APP的数据维度时,会使用到趋势分析法,因为趋势分析是最简单、最基础,也是最常见的数据监测与数据分析方法。通常我们在数据分析产品中建立一张数据指标的线图或者柱状图,然后持续观察,重点关注异常值。在这个过程中,我们要选定第一关键指标,而不要被虚荣指标所迷惑。
如果我们将我们分析的APP的下载量作为第一关键指标,可能就会走偏;因为用户下载APP并不代表他使用了你的产品。在这种情况下,建议将日活跃用户作为第一关键指标,而且是启动并且执行了某个操作的用户才能算上去;这样的指标才有实际意义,运营人员要核心关注这类指标。
三、一款产品都关注哪些数据维度
我们都知道,运营人每天都会跟各种各样的数据打交道,那一款产品都有那些数据维度是我们经常会分析到的呢?
一款产品(特指APP)的数据指标体系一般都可以分为:用户规模与质量、渠道分析、参与度分析、功能分析以用户属性分析。
1.用户规模和质量的分析:包括总用户数、新用户数、留存用户、转化率。用户规模和质量是APP分析最重要的维度,其指标也是相对其他维度最多,产品负责人要重点关注这个维度的指标。
2.渠道分析主要是分析各渠道在相关的渠道质量的变化和趋势,以科学评估渠道质量,优化渠道推广策略。渠道分析尤其要重视,因为现在移动应用市场刷量作弊是以及业内公开的秘密。渠道分析可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
3.参与度分析主要是分析用户的活跃度,分析的维度主要是包括启动次数分析、使用时长分析、访问页面分析和使用时间间隔分析。
4.功能分析主要包括:
功能活跃指标:某个功能的活跃用户,使用量情况;功能验证;对产品功能的数据分析,确保功能的取舍的合理性。
页面访问路径:用户从打开到离开应用整个过程中每一步骤的页面访问、跳转情况。页面访问路径是全量统计。通过路径分析得出用户类型的多样、用户使用产品目的的多样性,还原用户目的;通过路径分析,做用户细分;再通过用户细分,返回到产品的迭代
漏斗模型:是用于分析产品中关键路径的转化率,以确定产品流程的设计是否合理,分析用户体验问题。用户转化率的分析,核心考察漏斗每一层的流失原因的分析。通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
5.用户属性分析不管在我们的产品启动初期,还是战略的调整,分析用户画像都有着重要的意义。比如我们在产品设计前需要构建用户画像,指导设计、开发、运营;产品迭代过程需要收集用户数据,便于进行用户行为分析,与商业模式挂钩等等。
用户属性一般包括性别、年龄、职业、所在地、手机型号、使用网络情况。如果对用户的其他属性感兴趣的,可以到自的微信呢公众号后台或者其他诸如头条、uc等后台看用户属性都包含哪些维度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04