
在做用户行为分析时,我们需要用到哪些应用指标
我们知道用户行为数据的获取是由用户在网页或者APP的点击产生的,这些在网页或者APP的行为数据能够用来判断用户对产品的喜好及期望,所以分析用户的行为数据对于我们做精准营销以及迭代出符合用户喜好的产品非常重要。
但是,用户行为数据又那么多,我们很难做到一个个不遗漏的去分析,所以我们很有必要对用户行为数据进行一个简单而又方便全面的划分,以便我们处理和分析这些用户行为数据。
一、用户行为的分类及价值
我们知道由点击流数据衍生出了很多行为指标,比如:访问频率、平均停留时长、消费行为、信息互动行为、内容发布行为等。但是这些指标有太复杂,不利于我们进行快速的对用户进行分析,那么该如何对这些指标进行有效而又简单的而划分,进而有利于我们进行快速的分析用户呢?
1、用户行为的分类
本着简单又全的原则,我们将用户行为数据分为三类:
黏性;
活跃;
产出。
为什么这样划分呢?
这三个指标可以包含很多其他细分的行为指标,利用这三大指标进行系统而又简洁的划分,不遗漏的分析其他衍生出的指标将有助于我们避免累赘及减少工作量。而这些指标可共同衡量用户在网页及APP中的行为表现,进而去区分用户的行为特征,对用户打分,再去对不同类型的用户进行分群精细化营销推广,提升运营推广的价值。
用户行为分类如下图:
2、用户行为指标意义
1)黏性:主要关注用户在一段时间内持续访问的情况,是一种持续状态,所以将“访问频率”、“访问间隔时间”归在黏性的分类;
2)活跃:考察的是用户访问的参与度,一般对用户的每次访问取平均值,将“平均停留时间”、“平均访问页面数”用来衡量活跃指标;
3)产出:用来衡量用户创造的直接价值输出,例如电商 网站的“订单数”、“客单价”,一个衡量频率,一个衡量平均产出 的价值。
当然,可以基于用户行为的三大类:黏性、活跃、产出,在每个大类上再去添加不同的行为指标,只要能够体现其分析价值并且不重叠。比如,“黏性”指标里面包含了“访问频率”、“访问间隔时间”,访问次数越多,那相应的访问页数也就越多,如果在“黏性”里面加上“PV”就存在相关联性,进而对分析结果就产生影响,所以这里选择“平均访问页面数”,并把它放在“活跃”里面。即基于行为分类和指标的独立性,才能体现不同的分析价值。
二、基于用户行为分析的细分
根据用户行为的分类:黏性、活跃、产出,我们可以判断用户对产品的价值贡献,但是对于这些用户只根据这些指标能够判断他们的喜好吗?显然,这是不够的,我们还得去研究这些用户的特征及对产品的期望,再去做精准营销。那么,如何分析用户的喜好呢?
用户分类
我们知道不同的用户对网站内容是有不同的期望的,我们只有将用户进行细分,才能针对性的做出推荐。这里主要将用户细分成三大类:
流失用户/留存用户;
新用户/老用户;
单次购买用户/二次购买用户。
基于这3类细分,对每个分类的用户购买商品情况进行比较,明确哪些商品更加符合预期。以电商网站举例:
2.1 流失用户/留存用户举例
如下图:
算出流失用户比例后,我们只是知道每个商品的流失用户比例,但并不能评价这个商品是否对留住用户有促进作用,或者在一定程度上反而使得用户数量下降。我们只有设定一个电商网站商品的总体平均流失率,然后拿流失用户比例与总体平均流失率做对比,最后才能得出相应的结论。
那么,表格中的“与总体比较”数值是怎么计算得到的呢?通常,我们会根据网站的情况及经验设定一个总体平均流失率,这里设为56%,以A商品为例,计算的结果就是:
(58.13%-56%)/565=3.80%。
使用同样的方法可以把其他商品“与总体比较”的值算出来。由计算我们知道:
1)当结果为正数时,说明用户流失率大于总体平均流失率,此款商品表现比较差,不适合留住用户,表格中标为红色;
2)当计算结果为负数时,说明用户流失率小于总体平均流失率,此款商品表现较好,适合留住用户,表格中标为蓝色。
很明显,这样分析对运营很有指导性,对于能够留住用户的商品进行重点推荐,对于不能留住用户的商品进行优化或者下架。
2.2 新用户/老用户举例
继续用上面的例子来分析新用户/老用户的购买喜好。如下图:
从表格中知道,购买D商品的用户比例明显较低,F商品更符合用户口味。说明这样细分对新老客户的区分定向推广是有好处的,当然这要注意渠道推广的差异,比如把新用户放在新用户比较集中的Landing Page中显示,那么自然新用户购比例会较高。
2.3 单次购买用户/二次购买用户举例
我们知道用户的首次购物体验很重要,因为这会直接影响用户是否会进行二次或多次购买,或者成为网站的忠实粉丝。
举个例子,如下图:
由表格知道,B和F促进用户二次购买的表现不大好,然后我们需要分析原因,有可能是商品的质量或商品的使用问题影响了用户的满意度,也有可能是销售或者营销的问题,阻碍了用户再次购买的脚步,这里需要我们进行深入的研究。
三、总结
知道如何简单而又全面的进行用户分类后,然后再对用为行为细分,用户细分分析是用于比较的,比较是为了反映差异进而做出调整优化的,所以,细分的最终目的是指导运营决策,这也是数据分析的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18