京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业应在大数据应用上寻求突破
以大数据和云计算为代表的新技术正在融入并深刻影响着人们的生产生活,而且已经成为当前引领金融业变革的关键因素。大数据的价值体现在应用,而目前全球不同行业对于大数据的应用并不均衡,且呈现出诸多特点。
一是知易行难,理念快于应用。大数据常识被广泛传播,数据价值深入人心,但如何具体操作实施,并未形成清晰可行的思路和模式。二是星星之火,还未形成燎原之势。当前,大数据应用的成功案例主要集中于互联网行业,金融、零售、电信、公共管理、医疗卫生等领域虽然也在积极尝试,但还没有明显成效。三是数据封闭,数据开放共享有待加强。大数据的理想目标是能够汇聚内外部数据形成综合分析的全局视野,但实际上,现有应用仍然以机构内部数据为主。由于法律和数据交易机制不健全,数据交易平台和数据源拥有者在对外开放和交易数据上仍持谨慎态度。四是创新不足,突破性创新应用尚不多见。大数据应用多集中于市场营销领域,如改善客户服务、流程优化、精准营销和削减成本等,而在新产品、新服务、新商业模式等方面的突破性创新应用不多。
从保险业与大数据的渊源来看,其发展史本就是一部数据应用沿革的历史。在大数据时代,保险业拥有的数据类型从结构化扩展到非结构化,从交易数据扩展到行为数据,从内部数据扩展到外部数据,从定量数据扩展到定性数据,每一步发展都使保险业的数据基础更加夯实。
从不同行业应用大数据的水平来看,保险业走在前列。不过,与金融同业相比,保险业应用大数据水平落后于银行、证券,后者的行业数据信息共享平台建设较早,为大数据应用奠定了基础,而保险业的行业共享平台刚起步;与国外保险机构相比,我国保险机构也稍显落后。
当前,国外保险业大数据应用具有以下特点:一是对大数据的价值创造潜力已有广泛共识,保险业对大数据应用重视程度日益加深。二是数据来源日趋多元化。除传统的业务数据、财务数据外,国外保险业正积极拓展数据来源,客服、语音、官方网站、社交媒体、地理信息、可穿戴设备以及部分行业外数据都将成为大数据背景下保险业新的数据来源。三是应用领域不断扩展。国际保险业普遍认为,大数据同保险业的结合是全方位、全流程的,要充分挖掘应用节点,更好地利用大数据技术创造价值。四是商业效果开始显现。国际保险业普遍认为大数据理念、技术和资源的有效运用,将为行业创造前所未有的商业价值。
反观我国保险业大数据应用情况,与国外相比确实存在一定差距。目前,我国保险业高度重视大数据研究应用,大部分保险机构都认为大数据将给传统金融保险业带来深刻变革,必将成为未来企业的核心竞争力。但在数据资源积累上则未显现出变革的力量。调查显示,我国保险业数据资源总量仍偏小,以结构化数据为主,非结构化数据利用率较低,数据规模、应用效率与互联网等大数据应用水平先进的行业相比还有很大差距。由于数据资源匮乏,导致我国保险业对大数据大规模商业应用尚未出现,大部分保险机构还处于学习理解阶段,仅有少数公司开始进行小规模的试验。而现有实践则主要集中在营销领域,通过对客户数据的全面搜集,多维度刻画客户特征,实现精准营销。另外,尽管保险公司承认大数据将为保险业带来深刻变革,但从实际结果来看,仅有20%左右的保险机构建立了专门的大数据研发团队,这其中,三分之二的团队人数在10人以下,且绝大部分成员来自公司信息技术部门,跨学科、跨领域的复合型大数据人才严重不足。
展望未来,保险业大数据应用最有可能在以下几个领域取得突破:一是扩大承保范围。受保险理论和承保技术局限,过去不可保的风险,在大数据时代可能成为可保风险。大数据理念和技术的深度应用,将有效激发潜在的、全新的保险需求,如已经开展的运费退货险、正在酝酿的网络空间保险、云保险等。二是实现个性定价。大数据的出现使个性化费率制定和最优产品定价有了可能。数据量越大、数据维度越广,定价的精确度就越高,保险公司面临的逆选择风险越低,费率的科学性、充足性和公平性也就越理想。三是优化核保理赔。通过运用大数据分析建模,可以有效实现自动化核保核赔。四是提升反欺诈绩效。根据大数据技术本身的特点和保险公司欺诈事件的特性,可以在核保及理赔环节应用大数据技术开展反欺诈检测。五是提高运营效率。大数据在财务管理、行政管理、人力资源管理等领域的深入应用,对于改善保险机构运营及管理水平也有积极作用。六是助力风险管控。保险业可以在声誉风险、信用风险、操作风险等领域有效运用大数据,不断提高企业风险管理能力和水平。对于保险监管而言,大数据应用能够揭示传统技术难以展现的关联关系,为有效处理复杂风险提供新手段,为保险监管的现代化转型带来新机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05