京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据+金融”:智能化发展将擦出怎样的火花
在填写一份普通的调查问卷时,你会在意开头的英文字母是否大写吗?在“大数据+金融”浪潮中,这样的一个小细节也可能成为判断一个人守信与否的依据。
当前,大数据浪潮席卷全球,借助大数据理念和科技技术,人们得以以新的视角审视社会经济生活各方面的海量数据,并用新的思路和方法对其进行整合、评价及利用。

“以数据为切入点,大数据给予了金融业新的发展契机与空间。”近日,在清华大学与金电联行(北京)信息技术有限公司联合成立的“清华大学—金电联行金融大数据联合研究中心——(以下简称“研究中心”)揭牌仪式上,中国中小企业协会副会长、金电联行董事长范晓忻表示。
未来,“大数据+金融”将擦出怎样的火花?金融业的智能化又将发展到何种程度?
实践:智能征信
“大数据和金融的结合,最终的结果是智能化。”范晓忻认为。
近期,国内多家商业银行陆续推出了自行研发的智能机器人,交行的“娇娇”、民生的“ONE”、广发的“发发”等在市场上吸引了诸多眼球。
“经济发展进入新常态,各个行业发生了深刻变革,从我们监测到的各方面数据看得非常清楚,有很多问题亟待解决。”清华大学副校长尤政表示。
完善的征信体系建设是金融业发展的根基,而征信也恰恰是最能显露大数据优势的领域。日前,国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》中已明确指出,要以社会信用体系建设和政府信息公开数据开放为抓手,充分运用大数据、云计算等现代信息技术,提高政府服务水平,有序推进全社会信息资源开放共享,积极培育和发展社会化增信服务,提升数据资源对产业的支撑能力。
如何利用大数据完善征信体系?国内外均有所尝试。
在国内,利用大数据实现征信判断也已经在金融业有所实践。例如,金电联行公司此前与数十家金融机构合作推出了量化监管平台,通过对企业生产经营数据以及静态数据的定量分析,通过数百个指标项清晰了解贷款客户的风险状况,能够实现对未来3到6个月风险的发展趋势进行预警和预测。据某商业银行测算,大数据能有效降低不良率47%以上。
探索:智能风控+投顾+监管
除了征信领域外,“大数据+金融”的一个重要探索方向是智能金融风险管理。一个简单的例子是近年来频发的信用卡异地盗刷案。
“信用卡异地盗刷是极为明显的欺诈,如果智能化的辨别力足够强,通过对日常积累的大数据形成盗刷判断,就能够自动把明显的欺诈屏蔽,信用卡公司拒绝付款,对于金融机构而言也就实现了风险管控。”清华大学经济学研究所汤珂教授表示。
另一个重要的方向则是智能投资顾问。智能投资顾问事实上是金融科技的核心领域,某调查发现,在2008年国际金融危机的时候,美国的穷人资产损失了30%,而富人资产反而增加了2%。这背后的原因值得深思。
“富人有非常好的投资顾问,这些投资顾问能够给这些富人量身定制投资产品,而穷人没有。”汤珂强调,“因为美国的投资顾问费非常昂贵。”
专家认为,21世纪的信息技术对金融业最为核心的贡献,就是能够让中产阶级甚至是普通大众都能享受到智能投资顾问服务。
“智能投资顾问实际上主要是基于一种算法,通过对历史金融数据的基本评价,构建一个历史模型,然后根据历史规律,模拟将来。同时,还有最重要的一步,就是了解不同投资者的风险偏好程度。给定历史,给定将来,再给定不同投资者的不同风险偏好,有了这些智能投资顾问就能提供最优的投资建议。值得关注的是,如果把资金汇集到智能投资顾问平台,交易费用就降低很多。”汤珂表示。
落地:核心在于“算法”
随着传统金融业不断地将业务与服务延伸至互联网络,从有形的柜台业务到无形的云端服务,厚实的数据基础得到了极大程度的充盈。
业内人士认为,在大数据时代,大数据和金融的结合愈加紧密,如果在金融领域获取足够多的数据,就能够把大量的人工智能算法用在金融上,人工智能将成为大数据和金融结合的核心。
“大数据和金融的核心在于‘算法’,找到适合应用场景的人工智能算法,应该是大数据和金融的关键问题。”汤珂认为。
在“大数据+金融”蓝图下,国内的探索脚步正在加快。据悉,此次成立的金融大数据联合研究中心,就将致力于大数据应用理论研究、大数据挖掘及产业应用等关键技术的研发,根据不同行业特征,力争突破或改进原有的大数据挖掘技术、大数据组织及存储技术、行业信用评价指标项及大数据分析技术,为大数据技术开发、人才培养和产业发展提供指导,为大数据技术在银行征信、企业信用评价、政府社会治理、产业转型升级(爱基,净值,资讯)等多个领域应用落地提供支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06