京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据无法颠覆银行
随着新技术的不断引入,银行业新的想象空间也在不断打开。大数据,无疑是去年以来最受热议的技术之一,它与互联网的深度融合,甚至能够让徘徊在银行门口之外的资本有了颠覆传统的豪气。但有意思的现象是,相对保守的银行却一直甚少表露自己的真实想法。这个领域内对此说得最多的,反而不是做银行的。
J(化名)是国内零售银行业界的执牛耳者。近年来,已经很少露面的他上周约聊,与笔者重点谈及新技术对未来零售银行带来的机遇和挑战。他的观点一如既往地富有启发性,笔者认为很值得梳理下来,进行分享。
首先,他认为大数据不可能颠覆现有的零售银行的格局。理由很简单,大数据之所以令新的互联网银行模式兴起,是因为它提升了一个群体的商业价值——以往不被重视的客户。用长尾理论来解释,这些客户为数众多,但价值贡献却很小。新技术降低了这些客户的开发成本,但也仅此而已,因为最具价值的客户群体依然被银行牢牢掌握。
有意思的是,这些商业价值不大的客户一旦成长起来,还是会投入银行的怀抱。因为,随着他们逐渐成长,对信用服务复杂程度的要求也会上升,只有银行才能满足此类要求,并且成本最低。更何况,最具价值的资源依然掌握在银行手中——无论是稀缺的资本,还是最完备的数据,都在银行体系内。只是银行有自己的商业原则,成本收益不合算的市场是不会投入的。
所以,J的心态很开放。他说银行是“不作不死”,即便市场策略最差的银行也只是没特点,要被新技术彻底颠覆很难,更遑论一百年以来银行的产品已经没有大的创新,所有的改革都在流程和服务方面。他认为,现有的技术能力是必须正视的,因为它意味着历史成本的积累。而银行与实业界最大的不同就在于,新技术很少会带来弯道超车的机会,除非领先者突然变笨,自己把优势拱手相让。
其次,他认为大数据技术最大的受益者是银行,而不是互联网金融。除了上面已经述及的理由外,另一个原因就是最有价值的数据实际沉淀在银行,而不是在互联网企业。这会带来两个机遇,一是能对已收入囊中的有价值客户开发更具想象力的服务模式,二是与互联网企业一样,以往无法开发的数据也突然会变得具有商业价值。
他很委婉地向笔者举了一个例子。银行在信用卡业务上得到的经验是,只通过支付交易数据去模拟客户的基本特征,维度是比较单薄的。而实际上,银行体系里还沉淀有大量的其他维度的数据,例如,工资代发、基金托管、年金、公司账户等等,这些综合数据的应用足以令客户特征的还原更加真实。但问题是,这些数据的应用要么拘于法律限制,要么过去受到技术的限制,要么就是市场的复杂程度还不到这一步。事实上,以交易为主导的商业银行模式在境外市场已然非常成熟,大数据的应用也已经比较普遍。
他对笔者说,国内现有的以大数据为基础的互联网金融商业模式,基础都是支付交易数据,只有个别企业可以积累客户的其他生活数据。这种模式从算法上容易出现的问题是,由于缺乏数据的横比和参照,数据纵比在极端情况下容易出现模型失灵的情况。在规模不大的情况下,这不是问题,但一旦达到银行规模的级别,模型参数的真实性和有效性调校就必须列入日常的工作流程,因为这已经涉及公司经营的系统性风险。
笔者认同他的看法。因为,大数据在很多其他领域的应用也都存在类似的问题。最近,在经济研究业界引发轩然大波的《21世纪资本论》一书当中,法国经济学家皮凯蒂就遇到了同样的问题。在他的研究对象时间跨度内,能够完整积累数据的国家少之又少,只有少数几个国家在过去的两百年时间里,留下了完整真实的税收数据和国民财富统计数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06