
用大数据改造农业:一个有趣的中国故事
传统农业正在遭遇着互联网的冲击,这个贯穿着整个人类文明发展的产业正在发生聚变,传感器、物联网、云计算、大数据不但颠覆了日出而作日落而息地手工劳作方式,也打破了粗放式的传统生产模式,转而迈向集约化、精准化、智能化、数据化,农业生产因此获得了“类工业”的产业属性。
大数据农业并非一两家企业就可以完成,需要各方协同才能搭建完毕,探索才刚刚上路。
传统农业正在遭遇着互联网的冲击,这个贯穿着整个人类文明发展的产业正在发生聚变,传感器、物联网、云计算、大数据不但颠覆了日出而作日落而息地手工劳作方式,也打破了粗放式的传统生产模式,转而迈向集约化、精准化、智能化、数据化,农业生产因此获得了“类工业”的产业属性。
目前的物联网、大数据等技术已经可以实现对作物种植、培育、成熟和销售等环节的管理。在整体解决方案中,底层应用主要采用物联网技术,通过对作物的信息收集,将数据反馈至云平台中,方便决策和后续提供帮助。
“大数据的应用以及物联网的成熟,将弥补很多传统农业的不足,让整个产业更加科学合理。”软通动力信息技术(集团)有限公司首席技术官方发和告诉记者。
然而,大数据农业并非一两家企业就可以完成的任务,需要各方协同才能搭建完毕,对于大数据农业以及智慧城市的探索才刚刚上路。
数据的裂变
不可否认,互联网的渗透开始颠覆传统的农业模式,农业云计算与大数据的集成和未来的挖掘应用对于现代农业的发展具有重要作用。在农业发展中,大数据不仅可以渗透到生产经营的各环节,而且能够帮助农业实现跨行业、跨专业、跨业务的发展。
农业大数据的收集在发达国家其实已经颇为成熟。Data.gov 是奥巴马政府在 2009 年推出的,该网站上有诸如植物基因组学和当地天气情况的详尽数据库,还有一些关于特定土壤条件下最佳种植作物的研究、降水量的变化、害虫和疾病的迹象,以及当地市场作物的期望价格等数据库。在此基础上,美国农业部宣布在 Data.gov 的基础上建立一个门户网站,该网站能链接到 348个农业数据集。除了美国外,一些国家也公布了关于农业数据库公开的政策方案,推动建设开放性的农业数据共享平台,以数据驱动农业的全新模式呼之欲出。
目前,中国也开始了自己的实践。在河北( 农用地、 商住地、 工业地)廊坊( 农用地、 商住地、 工业地)的郊区,软通动力的团队在做着基于大数据的“智慧农业”尝试。软通动力在农田里安装了内置摄像头的传感器,通过传感器、摄像头等终端应用收集、采集农产品(12.01, -0.04, -0.33%)的各项指标,并将数据汇聚到云端进行实时监测、分析和管理,比如每天的气温、湿度、雨量等信息,还向农民发放了智能手机和平板电脑,让大家随时记录工作成果和现场注意到的问题。
在整个智慧农业体系中,信息收集作为提供数据的基础,可以实现决策层信息反补,比如在食品安全问题上,信息的收集可以帮助相关部门实现追溯,更好地解决源头的监控难题。在源头的监管体系中,“智慧农业”主要采用条形码及RFID技术进行记录、监督,从而实现针对生产、收获、库存、流通和食品安全等的管理,再根据不同地区、不同作物类型进行相应的数据信息调整,以便监控管理软件能够很好地帮助农户种植和管理作物。
“我们现在提供给客户的是一套整体的解决方案,之前受制于整体环境发展不充分,现在条件已经成熟了。”方发和向记者坦言,如今微电子和计算机等新技术不断涌现并被采用,将进一步提高传感器的智能化程度和感知能力,在源头的数据采集上解决了此前的难题。这一切都源于市场对整个物联网设备的需求剧增,根据市场研究公司Gartner发表的报告预测,明年投入使用的物联网设备数量将由今年的38亿个增长30%至49亿个,到2020年预计增长至250亿个。
协同发展
随着互联网的渗透,催生出订单式农业已经成为业内共识——农户根据同农产品的购买者之间所签订的订单,组织安排农产品生产的一种农业产销模式。在技术层面已不存在太多障碍的情况下,大数据农业的操盘者开始将更多精力放在了社区开发、电商平台搭建等环节上。
“通过数据的反馈,会更为清晰地了解整个产业链的情况,避免传统农业的资源浪费。”方发和向记者解释道,在智慧城市和农业大数据没有兴起之前,传统农业的最大弊端是难以和市场及时接通,“供不应求”或者“菜贱伤农”的现象经常发生,传统的农业生产与市场需求时常脱节的,农民的种植完全根据经验。通过种植技术的升级也仅仅是针对生产效率的问题,从宏观上还是没有改善脱节问题。
软通动力按照工业生产方式“以销定产”,由公司搜集市场需求,继而指导农户种植。事实上,智慧社区就是一套智能信息系统,落实到具体就是引入了多个信息管理系统,如生产管理系统、销售管理系统、ERP管理系统、温室管家系统、二维码追溯系统、配送管理系统。
在管控农产品的物流配送方面,软通动力也试图利用智慧社区来促进智慧农业的一站式便捷服务的搭建工作。“智慧农业是一个需要各方一起努力协同才能做起来的领域。”方发和说,目前以阿里( 农用地、 商住地、 工业地)巴巴为首的众多电商平台也开始涉足农业领域,这对于基于大数据的智慧农业的推广来说是一件好事,毕竟阿里巴巴也是一家以大数据为核心竞争力的企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01