
数据分析产品的下一个进化:基于无埋点的有埋点
一直以来,人们把大数据和埋点技术紧紧捆绑在一起,大数据时代也被称为埋点时代。技术发展,更新更快的无埋点技术横空出世。那么埋点技术是不是就此被判了死刑,无埋点就是万能的了?非也,二者只会进化的更为高级。
为什么这样说呢?其实从埋点技术的诞生和发展不难看出,一切都是源于大数据的发展,对数据的需求更加全面和精准,为适应这种发展,埋点技术不断更新迭代。这也是大数据发展的根源。
埋点的进化发展史
互联网发展起始阶段,用户不关心流量,没有意识到需要检测网站信息,一切都处在野蛮生长的阶段,随着时代的进步,业务也在增长,网站的流量开始增多,这时大家意识到这些数据中蕴含着大量的用户信息,加之用户需求越来越复杂,这时运营人员就需要一些关键的数据作为参考。
比如一些互联网公司,发展到一定程度,都会有专门的数据团队或者兼职数据人员,对公司的一些业务指标负责。同时产品的迭代升级同样需要大量的数据来支撑,如果没有数据指标的支撑,又怎么衡量这个功能升级是不是合理的呢?互联网产品并不是功能越多就越好,产品是否经得起用户考验,还是要基于数据说话的,然后学习新知识,用于下一轮的迭代。于是,埋点就此诞生了!
从埋点发展到今天的无埋点经历三个阶段的升级,第一阶段是代码埋点,最初的埋点是在代码的关键部位植入N行代码,追踪用户的行为,得到想要的数据。挖开产品本身,找到收集点.进行源源不断的传递数据。简单的说,找节点,布代码,收数据。
但随着业务规模扩大,数据需求增多,埋点效率低下,采集成本过高等问题开始暴露,这时候新的埋点技术出现了,即第二阶段框架式埋点。
框架式埋点也称“可视化埋点”。用框架式交互手段来代替纯手工写代码,固化相应代码的做为SDK,方便直接调用.这是一个非常大的进步。框架式埋点很好地解决了代码埋点的埋点代价大和更新代价大两个问题。但框架式埋点能够覆盖的功能有限,关键在于不是所有的控件操作都可以通过这种方案进行定制,而且数据收集难度加大,因此无埋点技术走入了大众的视线。
“无埋点”则是先尽可能收集所有的控件的操作数据,然后再通过界面配置哪些数据需要在系统里面进行分析。“无埋点”相比框架式埋点的优点,一方面是解决了数据“回溯”的问题,另一方面,“无埋点”方案也可以自动获取很多启发性的信息。无埋点大大减少了开发人员的开发成本及技术和业务人员的沟通成本。可以说无埋点技术的出现,最大化的提升了数据收集的速度,大幅缩短了数据收集周期,使得原来不敢想的事情现在敢做了,原来碍于必须有时效性不敢收集的数据也可以迅速进行分析了,在这点上,无埋点技术对传统埋点技术的优势巨大。那么发展到无埋点是否就此为止了呢?答案是否定的。
下一个阶段:无埋点基础上的有埋点
从埋点到无埋点,每个阶段的演变都是顺应时代发展的需求,二者不是简单的被淘汰,而是在原来的基础上更新迭代,回到根源上来说,对数据的全面和精准,也是技术进化的一个催化加。因此我们有理由大胆猜测,数据分析技术只会继续下一个阶段的进化,基于无埋点上的有埋点,支持我们的理由是什么?对此,99click商助科技给出了答案。
首先从无埋点的概念来说,所谓无埋点技术,并不是说完全不用在App中植入代码,而是需要调用SDK代码,在应用页面的加载过程中、点击事件传播过程中、在其中间的某个点自动嵌入监测代码来采集数据。简单来说,就是通过简单的引入一段代码来实现监测。目前主流的APP监测,引入监测方的SDK;网站端监测,则引入监测方的JS文件,通过引入的SDK或者JS文件来实现对APP或者网站的流量、页面热点、用户数等等这类基础数据的统计分析。因此无埋点,并非完全不埋点,只是少埋点,不是大家理解的不埋任何代码就能实现监测,无埋点不能脱离有埋点独立存在的。
其次,虽然无埋点看似十分先进,但也同样存在一些弊端,不能灵活地自定义属性,传输时效性和数据可靠性欠佳,由于所有的控件事件都全部搜集,给服务器和网络传输带来更大的负载;现有的无埋点技术并非官方标准方案,有可能在未来无法使用;监测需求相对比较基础,更多的是依据流量、用户、热点的一些分析统计,不涉及到一些自定义、或者更细化的统计分析,比如每个订单、会员的监测;或者页面存在jQuery时对页面热点的监测。
比如我们以APP来说,APP所有新闻页、产品详情页的类名都是一个,那么无埋点就无法区分不同新闻页或者产品详情页的数据,这就影响到了数据的精准,这种情况下就需要添加代码来实现。
就比如城市要铺设新的业务管道,那必须开挖路面,光看是不行的,同时要计量或控制管道的流量大小,知道管道里的流动情况,就必须在相应的节点上装相应的阀门,这就好像埋点一样。
有时一些特殊需求或者特殊格式,也需要额外手动发送请求代码来实现,比如滚动条高度、及其它稍复杂的监控都无法做到,如果需要采集全方位的数据进行更专业的分析,仍需要靠开发人员来埋点配置。
可见,无埋点在数据监测中并不能做到全面。这就注定埋点技术不会安安静静的选择“狗带”,无埋点技术又不是吹嘘的十分万能。实现全面监测,将二者有效的结合在一起才是发展的正理。
因此在基于无埋点的基础上,通过一些手动发送请求方式(也就是所谓的埋点),来实现全面监测,这是目前行业需求和技术发展的主流方向,在这方面,国内领先的第三方数据监测服务商99click商助科技走在了技术的前端,在无埋点的基础上融入有埋点技术,为用户提供全面、精准的数据信息。这种技术既解决了数据分析中的弊端,又确保了数据的精准性,同时也具备很强的扩展性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25