
大数据时代的存储安全
作为大数据时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能楼宇等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的数据安全一系列问题,吸引着行业的关注。
大数据引发监控数据安全性问题突出
大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,这就叫做数据挖掘。同样的数据摆在我们面前不同的挖掘方法,不同的挖掘目标可以为各种各样的业务的应用产生有价值的信息。对于安防行业,监控技术如今正面临日新月异的变革,模拟视频监控正在向IP网络监控转变,巨大转变的同时对安全性也提出了更高的要求。我们探讨数据安全,包括产品本身的物理安全和产生数据的安全。所以,大数据时代引发监控数据安全性问题有以下几点:
1、基础设备的风险:包括监控中心的存储设备、服务器和前端节点设备的安全性、网络设备的安全性、传输线缆的安全性等。设备的安全可靠是整个大数据安防系统安全运行的基础。
2、信息存取的风险:包括用户非法访问、数据丢失、数据被篡改等。系统信息的安全,主要运用各种加密技术、存储技术、及备份方案来达到系统信息的安全。
3、信息在网络上传输的风险:包括视频信息、录像数据信息、用户信息等在传输过程中保密性、完整性的保障以及传输链路上的节点设备的安全。另外还包括前端采集设备、社会监控资源接入公安监控专网的安全。
4、系统运行的风险:包括接入设备的识别和认证、设备运行故障、软件病毒、恶意代码、以及设备控制的优先级调度等。系统运行时的风险控制主要依靠视频监控软件平台来保障,该软件平台可以完成设备管理、故障监控、访问控制、用户管理、鉴权机制等一系列的功能来保障整个系统的安全运行。
基于以上4点,从存储设备的角度我们主要谈及前面两点。
大数据也催生监控存储方式变革
在一个时代下,必然会发生诸多变革。
视频监控的存储技术和介质从VCR模拟存储、DVR数字存储,逐渐向NVR、NAS、SAN等网络存储发展。而在存储方式上,主要有集中式存储和分布式存储两种。大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。为此,我们关注点是,大数据下的信息安全问题将衍生新的机遇,提升安防的价值。
随着安防形势的复杂多变和大数据时代的来临,对视频录像文件分析的需求越来越多。视频监控系统中也越来越多的使用了高级的数据存储设备和系统,例如专业的磁盘阵列系统等等。同理,安防行业使用这些专业存储设备时,需要充分了解这些软硬件的特性,而不要仅仅把它们当作超级外接大硬盘来使用。在系统设计和实施过程中可以充分利用这些设备中自带的一些数据保护软件来保护自己的数据。常用和流行的数据安全保护技术主要有以下七种:
磁盘阵列:磁盘阵列是指把多个类型、容量、接口甚至品牌一致的专用磁盘或普通硬盘连成一个阵列,使其以更快的速度、准确、安全的方式读写磁盘数据,从而加快数据读取速度、提高数据保存的安全性。
SAN:SAN允许服务器在共享存储装置的同时仍能高速传送数据。这一方案具有带宽高、可用性高、容错能力强的优点,而且它可以轻松升级,容易管理,有助于改善整个系统的总体成本状况。我们推荐FCSAN方案,它能为大数据时代的视频监控,相较于IPSAN方案,大幅减少存储设备台数,从而大幅降低成本,在数据安全方面由于自身设备超高的稳定性和性能来得以保障。
数据备份:备份管理包括数据备份的计划,自动操作,备份日志的保存。
双机容错:双机容错的目的在于保证系统数据和服务的在线性,即当某一系统发生故障时,仍然能够正常的向网络系统提供数据和服务,使得系统不至于停顿,双机容错的目的在于保证数据不丢失和系统不停机。
NAS解决方案通常配置为作为文件服务的设备,由工作站或服务器通过网络协议和应用程序来进行文件访问,大多数NAS链接在工作站客户机和NAS文件共享设备之间进行。这些链接依赖于企业的网络基础设施来正常运行;NAS提供视频监控系统后期视频文件批量处理分析的基本可能。
数据迁移:由在线存储设备和离线存储设备共同构成一个协调工作的存储系统,该系统在在线存储和离线存储设备间动态的管理数据,使得访问频率高的数据存放于性能较高的在线存储设备中,而访问频率低的数据存放于较为廉价的离线存储设备中;视频录像的归档可以充分利用高级存储设备的数据迁移手段;分层存储有效降低存储系统的整体成本。
异地容灾:以异地实时备份为基础的、高效的、可靠的远程数据存储,在各单位的IT系统中,必然有核心部分,通常称之为生产中心。往往给生产中心配备一个备份中心,改备份中心是远程的,并且在生产中心的内部已经实施了各种各样的数据保护。不管怎么保护,当火灾、地震这种灾难发生时,一旦生产中心瘫痪了,备份中心会接管生产,继续提供服务;视频监控的多中心配置越来越多,各个中心的系统和数据容灾应该借鉴IT的容灾技术考虑。
结束语
大数据是继云计算、物联网之后信息产业当前科技创新、产业政策及国家安全领域的又一次知识新增长点。在大数据的背景下信息安全面临着很多的挑战,特别是现阶段视频监控已有的信息安全手段已经不能满足大数据时代的信息安全的实际要求,因此研究大数据时代视频监控所面临的信息安全问题具有重要意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04