京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的存储安全
作为大数据时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能楼宇等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的数据安全一系列问题,吸引着行业的关注。

大数据引发监控数据安全性问题突出
大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,这就叫做数据挖掘。同样的数据摆在我们面前不同的挖掘方法,不同的挖掘目标可以为各种各样的业务的应用产生有价值的信息。对于安防行业,监控技术如今正面临日新月异的变革,模拟视频监控正在向IP网络监控转变,巨大转变的同时对安全性也提出了更高的要求。我们探讨数据安全,包括产品本身的物理安全和产生数据的安全。所以,大数据时代引发监控数据安全性问题有以下几点:
1、基础设备的风险:包括监控中心的存储设备、服务器和前端节点设备的安全性、网络设备的安全性、传输线缆的安全性等。设备的安全可靠是整个大数据安防系统安全运行的基础。
2、信息存取的风险:包括用户非法访问、数据丢失、数据被篡改等。系统信息的安全,主要运用各种加密技术、存储技术、及备份方案来达到系统信息的安全。
3、信息在网络上传输的风险:包括视频信息、录像数据信息、用户信息等在传输过程中保密性、完整性的保障以及传输链路上的节点设备的安全。另外还包括前端采集设备、社会监控资源接入公安监控专网的安全。
4、系统运行的风险:包括接入设备的识别和认证、设备运行故障、软件病毒、恶意代码、以及设备控制的优先级调度等。系统运行时的风险控制主要依靠视频监控软件平台来保障,该软件平台可以完成设备管理、故障监控、访问控制、用户管理、鉴权机制等一系列的功能来保障整个系统的安全运行。
基于以上4点,从存储设备的角度我们主要谈及前面两点。
大数据也催生监控存储方式变革
在一个时代下,必然会发生诸多变革。
视频监控的存储技术和介质从VCR模拟存储、DVR数字存储,逐渐向NVR、NAS、SAN等网络存储发展。而在存储方式上,主要有集中式存储和分布式存储两种。大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。为此,我们关注点是,大数据下的信息安全问题将衍生新的机遇,提升安防的价值。
随着安防形势的复杂多变和大数据时代的来临,对视频录像文件分析的需求越来越多。视频监控系统中也越来越多的使用了高级的数据存储设备和系统,例如专业的磁盘阵列系统等等。同理,安防行业使用这些专业存储设备时,需要充分了解这些软硬件的特性,而不要仅仅把它们当作超级外接大硬盘来使用。在系统设计和实施过程中可以充分利用这些设备中自带的一些数据保护软件来保护自己的数据。常用和流行的数据安全保护技术主要有以下七种:
磁盘阵列:磁盘阵列是指把多个类型、容量、接口甚至品牌一致的专用磁盘或普通硬盘连成一个阵列,使其以更快的速度、准确、安全的方式读写磁盘数据,从而加快数据读取速度、提高数据保存的安全性。
SAN:SAN允许服务器在共享存储装置的同时仍能高速传送数据。这一方案具有带宽高、可用性高、容错能力强的优点,而且它可以轻松升级,容易管理,有助于改善整个系统的总体成本状况。我们推荐FCSAN方案,它能为大数据时代的视频监控,相较于IPSAN方案,大幅减少存储设备台数,从而大幅降低成本,在数据安全方面由于自身设备超高的稳定性和性能来得以保障。
数据备份:备份管理包括数据备份的计划,自动操作,备份日志的保存。
双机容错:双机容错的目的在于保证系统数据和服务的在线性,即当某一系统发生故障时,仍然能够正常的向网络系统提供数据和服务,使得系统不至于停顿,双机容错的目的在于保证数据不丢失和系统不停机。
NAS解决方案通常配置为作为文件服务的设备,由工作站或服务器通过网络协议和应用程序来进行文件访问,大多数NAS链接在工作站客户机和NAS文件共享设备之间进行。这些链接依赖于企业的网络基础设施来正常运行;NAS提供视频监控系统后期视频文件批量处理分析的基本可能。
数据迁移:由在线存储设备和离线存储设备共同构成一个协调工作的存储系统,该系统在在线存储和离线存储设备间动态的管理数据,使得访问频率高的数据存放于性能较高的在线存储设备中,而访问频率低的数据存放于较为廉价的离线存储设备中;视频录像的归档可以充分利用高级存储设备的数据迁移手段;分层存储有效降低存储系统的整体成本。
异地容灾:以异地实时备份为基础的、高效的、可靠的远程数据存储,在各单位的IT系统中,必然有核心部分,通常称之为生产中心。往往给生产中心配备一个备份中心,改备份中心是远程的,并且在生产中心的内部已经实施了各种各样的数据保护。不管怎么保护,当火灾、地震这种灾难发生时,一旦生产中心瘫痪了,备份中心会接管生产,继续提供服务;视频监控的多中心配置越来越多,各个中心的系统和数据容灾应该借鉴IT的容灾技术考虑。
结束语
大数据是继云计算、物联网之后信息产业当前科技创新、产业政策及国家安全领域的又一次知识新增长点。在大数据的背景下信息安全面临着很多的挑战,特别是现阶段视频监控已有的信息安全手段已经不能满足大数据时代的信息安全的实际要求,因此研究大数据时代视频监控所面临的信息安全问题具有重要意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08