
大数据:推动智慧城市迈向未来
大数据不仅仅是一种数据处理方式,更是一种思维方式的革新,其所代表的是一种完全的不同的信息数据处理方法和思维方式。这一方式为商业智能分析带去了新的变革,摆脱了先前只关心因果关系的分析模式,而将相关关系等相对模糊,却更有预见性和指导性的数据关系带入了商业分析之中。
在刚刚结束的十八届五中全会上,坚持创新发展已经被摆在国家发展全局的核心位置上,而全会公报中,国家大数据战略做为创新驱动发展战略中的重要组成部分,已被直接写在了公报正文当中。而今年9月,国务院正式公布了我国《促进大数据发展行动纲要》,规划了大数据在社会治理、经济运行、民生服务、创新驱动、产业发展等多方面的应用,已经将坚持创新驱动发展,加快大数据部署,深化大数据应用,视为稳增长、促改革、调结构、惠民生和推动政府治理能力现代化的内在需要和必然选择。从国家政策层面对大数据技术的肯定和运用,源于这一技术在商业、交通、医疗等领域多年来的成功应用。其实,大数据已经在不知不觉当中被人们日常生活中经常接触,并且成为必不可少的技术手段。
对大数据的研究,有很大一部分是来自于商业智能分析,随着IT技术的发展,人们能够获取信息数据的方式,所掌握的信息数据的种类都越来越多,原先的商业分析方法已经无法适应信息爆炸所带来的形势变化。大数据技术因此应运而生,可以说,大数据不仅仅是一种数据处理方式,更是一种思维方式的革新,其所代表的是一种完全的不同的信息数据处理方法和思维方式。这一方式为商业智能分析带去了新的变革,摆脱了先前只关心因果关系的分析模式,而将相关关系等相对模糊,却更有预见性和指导性的数据关系带入了商业分析之中。
大数据技术和理念的诞生,至今也不到十年,却也正是伴随着智慧城市的发展逐步发展和成熟起来的。智慧城市的建设者们发现,大数据技术和思维,几乎天生就是为智慧城市而生的。大数据技术所依赖的庞大数据源,正是智慧城市建设中信息化程度的日益加深所带来的大量各种不同类型的数据信息。而智慧城市建设的目标之一,是要实现城市的智能化运行,而大数据正好能提供支持智能运行的数据分析结果。
在智慧城市的各个领域之中,比较广泛的运用大数据分析技术的,恐怕要数城市交通管理了,能够影响城市交通整体状况的因素非常多,天气、道路、车辆、驾驶人、节假日乃至油价、物价,都可能直接或间接影响一座城市或某一区域的交通状况。智能交通大数据分析,已经是国内外许多大城市对交通状况进行管理和调控时的必由之路,其意义已不仅仅只是预测结果,改善交通状况,更重要的是带给决策者一种新鲜的思维方式:利用已知的现在去预测未知的未来。随着智能交通的普及,大数据也在各个方面影响着人们的生活、出行方式,通过上传数据、共享数据、分享数据处理结果,形成对交通状况的预测与预判,从而更好地对交通状况进行调控与干预,从而逐步改善和解决各类交通问题。
笔者所在的上海互联网软件有限公司最近与东华大学联合成立了大数据应用研究联合实验室,目前正在研究运用大数据技术对高校在校学生进行综合管理,并提供相应服务。这是国内在智慧教育领域的研究中典型的教育大数据应用,其在学生数据整合和统一存储的基础之上,实现对学生的综合服务和管理,并提供基于数据信息进行全方位分析,为高校的各级单位提供学生综合管理的云服务,提升学校的整体管理效能。随着国内高校建设日益向集中、综合、全学科等方向发展,超大型高等院校或高校综合园区不断出现,高校学生数量也不断增长,一个大学或大学城基本就是一座小城市,以学生为主的人群的各类学习、生活、教务、日常管理等数据信息,自然而然的形成了一个庞大的数据集合,运用大数据技术对其进行管理、分析和运营,无疑是实现教育资源的共享和集约化、规范化管理,全面展示和分析学生行为,提升学生管理和服务水平和效率的最佳手段。
此外,在智慧医疗领域,如一些重病大病的诊断、治疗环节,大数据技术也正在被运用与数据分析与预测之中。早前就有消息报道,有国内知名IT企业与医学研究机构联手,针对食管癌基因检测的相关研究。双方合作致力于通过大数据和人工智能的方法来推进癌症的研究,发现跟中国人密切相关的食管癌早期诊断的标志物,为早期筛查和诊断提供科学依据并为药物的研发提供参考。对癌症这类重大病症的深入医学研究,常需要进行全基因组测序和比对,期间会产生大量数据,这些数据的存储、生物学分析、临床相关性分析都需要巨大的数据存储与运算能力。大数据技术对此类生物信息进行储存、检索与智能分析,正是其优势所在。
可见,大数据在智慧城市建设中,是一项适应于各个环节和领域,并且拥有无限潜力的技术。大数据技术所带来的对数据信息的革命性运用方式,将推动包括人工智能在内的智能化技术的发展和成熟。展望未来,基于大数据等技术带来的数据分析和预测,智慧城市可能不需要人为的过多干预和监控,便能自行运转和管理。到那时,智慧城市为我们带来的将不仅仅是信息化程度的加深,而是一座座进入全智能化时代,拥有自主思维能力的未来城市。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03