
MapReduce为大数据挖掘提供了有力的支持,但是复杂的挖掘算法往往需要多个MapReduce作业才能完成,多个作业之间存在着冗余的磁盘读写开销和多次资源申请过程,使得基于MapReduce的算法实现存在严重的性能问题。后起之秀Spark得益于其在迭代计算和内存计算上的优势,可以自动调度复杂的计算任务,避免中间结果的磁盘读写和资源申请过程,非常适合数据挖掘算法。腾讯TDW Spark平台基于社区最新Spark版本进行深度改造,在性能、稳定和规模方面都得到了极大的提高,为大数据挖掘任务提供了有力的支持。
本文将介绍基于物品的协同过滤推荐算法案例在TDW Spark与MapReudce上的实现对比,相比于MapReduce,TDW Spark执行时间减少了66%,计算成本降低了40%。
算法介绍
互联网的发展导致了信息爆炸。面对海量的信息,如何对信息进行刷选和过滤,将用户最关注最感兴趣的信息展现在用户面前,已经成为了一个亟待解决的问题。推荐系统可以通过用户与信息之间的联系,一方面帮助用户获取有用的信息,另一方面又能让信息展现在对其感兴趣的用户面前,实现了信息提供商与用户的双赢。
协同过滤推荐(Collaborative Filtering Recommendation)算法是最经典最常用的推荐算法,算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。协同过滤可细分为以下三种:
User-based CF: 基于User的协同过滤,通过不同用户对Item的评分来评测用户之间的相似性,根据用户之间的相似性做出推荐;
Item-based CF: 基于Item的协同过滤,通过用户对不同Item的评分来评测Item之间的相似性,根据Item之间的相似性做出推荐;
Model-based CF: 以模型为基础的协同过滤(Model-based Collaborative Filtering)是先用历史资料得到一个模型,再用此模型进行预测推荐。
问题描述
输入数据格式:Uid,ItemId,Rating (用户Uid对ItemId的评分)。
输出数据:每个ItemId相似性最高的前N个ItemId。
由于篇幅限制,这里我们只选择基于Item的协同过滤算法解决这个例子。
算法逻辑
基于Item的协同过滤算法的基本假设为两个相似的Item获得同一个用户的好评的可能性较高。因此,该算法首先计算用户对物品的喜好程度,然后根据用户的喜好计算Item之间的相似度,最后找出与每个Item最相似的前N个Item。该算法的详细描述如下:
计算用户喜好:不同用户对Item的评分数值可能相差较大,因此需要先对每个用户的评分做二元化处理,例如对于某一用户对某一Item的评分大于其给出的平均评分则标记为好评1,否则为差评0。
计算Item相似性:采用Jaccard系数作为计算两个Item的相似性方法。狭义Jaccard相似度适合计算两个集合之间的相似程度,计算方法为两个集合的交集除以其并集,具体的分为以下三步。
1) Item好评数统计,统计每个Item的好评用户数。
2) Item好评键值对统计,统计任意两个有关联Item的相同好评用户数。
3) Item相似性计算,计算任意两个有关联Item的相似度。
找出最相似的前N个Item。这一步中,Item的相似度还需要归一化后整合,然后求出每个Item最相似的前N个Item,具体的分为以下三步。
1) Item相似性归一化。
2) Item相似性评分整合。
3) 获取每个Item相似性最高的前N个Item。
基于MapReduce的实现方案
使用MapReduce编程模型需要为每一步实现一个MapReduce作业,一共存在包含七个MapRduce作业。每个MapReduce作业都包含Map和Reduce,其中Map从HDFS读取数,输出数据通过Shuffle把键值对发送到Reduce,Reduce阶段以<key,iterator>作为输入,输出经过处理的键值对到HDFS。其运行原理如图1 所示。
七个MapReduce作业意味着需要七次读取和写入HDFS,而它们的输入输出数据存在关联,七个作业输入输出数据关系如图2所示。
基于MapReduce实现此算法存在以下问题:
为了实现一个业务逻辑需要使用七个MapReduce作业,七个作业间的数据交换通过HDFS完成,增加了网络和磁盘的开销。
七个作业都需要分别调度到集群中运行,增加了Gaia集群的资源调度开销。
MR2和MR3重复读取相同的数据,造成冗余的HDFS读写开销。
这些问题导致作业运行时间大大增长,作业成本增加。
基于Spark的实现方案
相比与MapReduce编程模型,Spark提供了更加灵活的DAG(Directed Acyclic Graph) 编程模型, 不仅包含传统的map、reduce接口, 还增加了filter、flatMap、union等操作接口,使得编写Spark程序更加灵活方便。使用Spark编程接口实现上述的业务逻辑如图3所示。
相对于MapReduce,Spark在以下方面优化了作业的执行时间和资源使用。
DAG编程模型。 通过Spark的DAG编程模型可以把七个MapReduce简化为一个Spark作业。Spark会把该作业自动切分为八个Stage,每个Stage包含多个可并行执行的Tasks。Stage之间的数据通过Shuffle传递。最终只需要读取和写入HDFS一次。减少了六次HDFS的读写,读写HDFS减少了70%。
Spark作业启动后会申请所需的Executor资源,所有Stage的Tasks以线程的方式运行,共用Executors,相对于MapReduce方式,Spark申请资源的次数减少了近90%。
Spark引入了RDD(Resilient Distributed Dataset)模型,中间数据都以RDD的形式存储,而RDD分布存储于slave节点的内存中,这就减少了计算过程中读写磁盘的次数。RDD还提供了Cache机制,例如对上图的rdd3进行Cache后,rdd4和rdd7都可以访问rdd3的数据。相对于MapReduce减少MR2和MR3重复读取相同数据的问题。
效果对比
测试使用相同规模的资源,其中MapReduce方式包含200个Map和100个Reduce,每个Map和Reduce配置4G的内存; 由于Spark不再需要Reduce资源, 而MapReduce主要逻辑和资源消耗在Map端,因此使用200和400个Executor做测试,每个Executor包含4G内存。测试结果如下表所示,其中输入记录约38亿条。
运行模式计算资源运行时间(min)成本(Slot*秒)
MapReduce200 Map+100 Reduce(4G)120693872
Spark200 Executor(4G)33396000
Spark400 Executor(4G)21504000
对比结果表的第一行和第二行,Spark运行效率和成本相对于MapReduce方式减少非常明显,其中,DAG模型减少了70%的HDFS读写、cache减少重复数据的读取,这两个优化即能减少作业运行时间又能降低成本;而资源调度次数的减少能提高作业的运行效率。
对比结果表的第二行和第三行,增加一倍的Executor数目,作业运行时间减少约50%,成本增加约25%,从这个结果看到,增加Executor资源能有效的减少作业的运行时间,但并没有做到完全线性增加。这是因为每个Task的运行时间并不是完全相等的, 例如某些task处理的数据量比其他task多;这可能导致Stage的最后时刻某些Task未结束而无法启动下一个Stage,另一方面作业是一直占有Executor的,这时候会出现一些Executor空闲的状况,于是导致了成本的增加。CDA数据分析师培训官网
小结
数据挖掘类业务大多具有复杂的处理逻辑,传统的MapReduce/Pig类框架在应对此类数据处理任务时存在着严重的性能问题。针对这些任务,如果利用Spark的迭代计算和内存计算优势,将会大幅降低运行时间和计算成本。TDW目前已经维护了千台规模的Spark集群,并且会在资源利用率、稳定性和易用性等方面做进一步的提升和改进,为业务提供更有利的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01