京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看看这些制造企业要如何正确看待大数据
互联网发展到今天,大数据、云计算成为热词,但是究竟什么是大数据,和数据有什么区别,却鲜少有人了解。在制造业转型之时,大数据又是如何发挥它强大的作用,今天我们就来说说大数据的那些事。
何为大数据?
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。这样说定义或许很难理解,其实简单来说,大数据就是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易揭示的规律。
由此,我们可以看出,大数据有两个明显的特征:第一,数据的属性包括结构化、非结构化和半结构化;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。
了解了大数据的概念,我们就要知道大数据在哪些方面应用广泛。很多人认为对于企业营销来说,大数据能够起到很大的作用。但其实在制造业转型升级的今天,智能化制造也离不开大数据,但是到底要怎么利用大数据,制造企业要怎样正确看待大数据?这是我们要讨论的。
制造业+大数据=?
在工业4.0的概念提出后,智能化、物联网、大数据、云计算成为热点,这些都体现了制造业需要信息化的支持,新一轮的工业革命在智能化、信息化、数字化维度才能有所突破。因为,传统制造业并不是信息化非常发达的行业,这一点体现在多数制造业的流程传统而粗糙,即使有现代化的设备,整体的信息化方案也多半来自设备制造商。
因此,制造业亟需大数据来进行一场信息化的改革,大数据会为制造业带来深远的影响:
首先,大数据能够为制造业带来更精准、更先进的工艺,以及更优质的产品,以弥补制造业整体水平低下的现状。
第二,制造业作为大数据的源头,一旦被数字化后,制造生产过程中产生的数据都可以成为大数据的范畴,对日积月累的大数据进行分析研究,便可为下一步的生产制造提供可行的方法和措施。
第三,在信息化当道的今天,智能制造已经成为趋势,制造企业除了保持匠心精神外,升级转型必然要利用数字化、大数据、物联网等技术,工业机器人的应用一定是需要大数据作为支撑。在这个“风起云涌”、“变幻万千”的高速发展时代,竞争异常激烈,如果没有布局相关技术,淘汰是唯一的结局。
第四,有人说是互联网打垮了实体经济,现实却恰恰相反。如果没有互联网,没有大数据,很多传统制造业连转型的机会都没有。遭到淘汰的制造企业,无非是没有转型,或者转型失败,但不能因此就说互联网是“杀死”制造业的“元凶”。大数据代表了新的制造业产业革命,是产业转型的标志性技术和关键性技术,把大数据运用到最佳状态,传统制造业必会迎来新的台阶。
对此,国家也出台了相关政策法规,国务院印发《促进大数据发展行动纲要》,明确提出,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
大数据是一种思维变化,目前我们的制造业缺乏的就是一种创新性、逻辑性的思维能力。大数据能够为制造业提供全方位的服务,从产品设计到制造、从使用到维护、维修等售后服务阶段,产生的正向数据以及逆向数据,都将得到全面应用,智慧工厂离我们不远了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22