
需要通过Java程序提交Yarn的MapReduce的计算任务。与一般的通过Jar包提交MapReduce任务不同,通过程序提交MapReduce任务需要有点小变动,详见以下代码。
以下为MapReduce主程序,有几点需要提一下:
1、在程序中,我将文件读入格式设定为WholeFileInputFormat,即不对文件进行切分。
2、为了控制reduce的处理过程,map的输出键的格式为组合键格式。与常规的<key,value>不同,这里变为了<textpair,value>,TextPair的格式为<key1,key2>。
3、为了适应组合键,重新设定了分组函数,即GroupComparator。分组规则为,只要TextPair中的key1相同(不要求key2相同),则数据被分配到一个reduce容器中。这样,当相同key1的数据进入reduce容器后,key2起到了一个数据标识的作用。
package web.Hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobStatus;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;
import util.Utils;
public class GEMIMain {
public GEMIMain(){
job = null;
}
public Job job;
public static class NamePartitioner extends
Partitioner<textpair, byteswritable=""> {
@Override
public int getPartition(TextPair key, BytesWritable value,
int numPartitions) {
return Math.abs(key.getFirst().hashCode() * 127) % numPartitions;
}
}
/**
* 分组设置类,只要两个TextPair的第一个key相同,他们就属于同一组。他们的Value就放到一个Value迭代器中,
* 然后进入Reducer的reduce方法中。
*
* @author hduser
*
*/
public static class GroupComparator extends WritableComparator {
public GroupComparator() {
super(TextPair.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
TextPair t1 = (TextPair) a;
TextPair t2 = (TextPair) b;
// 比较相同则返回0,比较不同则返回-1
return t1.getFirst().compareTo(t2.getFirst()); // 只要是第一个字段相同的就分成为同一组
}
}
public boolean runJob(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
// 在conf中设置outputath变量,以在reduce函数中可以获取到该参数的值
conf.set("outputPath", args[args.length - 1].toString());
//设置HDFS中,每次任务生成产品的质量文件所在文件夹。args数组的倒数第二个原数为质量文件所在文件夹
conf.set("qualityFolder", args[args.length - 2].toString());
//如果在Server中运行,则需要获取web项目的根路径;如果以java应用方式调试,则读取/opt/hadoop-2.5.0/etc/hadoop/目录下的配置文件
//MapReduceProgress mprogress = new MapReduceProgress();
//String rootPath= mprogress.rootPath;
String rootPath="/opt/hadoop-2.5.0/etc/hadoop/";
conf.addResource(new Path(rootPath+"yarn-site.xml"));
conf.addResource(new Path(rootPath+"core-site.xml"));
conf.addResource(new Path(rootPath+"hdfs-site.xml"));
conf.addResource(new Path(rootPath+"mapred-site.xml"));
this.job = new Job(conf);
job.setJobName("Job name:" + args[0]);
job.setJarByClass(GEMIMain.class);
job.setMapperClass(GEMIMapper.class);
job.setMapOutputKeyClass(TextPair.class);
job.setMapOutputValueClass(BytesWritable.class);
// 设置partition
job.setPartitionerClass(NamePartitioner.class);
// 在分区之后按照指定的条件分组
job.setGroupingComparatorClass(GroupComparator.class);
job.setReducerClass(GEMIReducer.class);
job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(NullOutputFormat.class);
// job.setOutputKeyClass(NullWritable.class);
// job.setOutputValueClass(Text.class);
job.setNumReduceTasks(8);
// 设置计算输入数据的路径
for (int i = 1; i < args.length - 2; i++) {
FileInputFormat.addInputPath(job, new Path(args[i]));
}
// args数组的最后一个元素为输出路径
FileOutputFormat.setOutputPath(job, new Path(args[args.length - 1]));
boolean flag = job.waitForCompletion(true);
return flag;
}
@SuppressWarnings("static-access")
public static void main(String[] args) throws ClassNotFoundException,
IOException, InterruptedException {
String[] inputPaths = new String[] { "normalizeJob",
"hdfs://192.168.168.101:9000/user/hduser/red1/",
"hdfs://192.168.168.101:9000/user/hduser/nir1/","quality11111",
"hdfs://192.168.168.101:9000/user/hduser/test" };
GEMIMain test = new GEMIMain();
boolean result = test.runJob(inputPaths);
}
}
以下为TextPair类
public class TextPair implements WritableComparable {
private Text first;
private Text second;
public TextPair() {
set(new Text(), new Text());
}
public TextPair(String first, String second) {
set(new Text(first), new Text(second));
}
public TextPair(Text first, Text second) {
set(first, second);
}
public void set(Text first, Text second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
@Override
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
@Override
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}
@Override
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
}
@Override
public String toString() {
return first + "\t" + second;
}
@Override
/**A.compareTo(B)
* 如果比较相同,则比较结果为0
* 如果A大于B,则比较结果为1
* 如果A小于B,则比较结果为-1
*
*/
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
//此时实现的是升序排列
return second.compareTo(tp.second);
}
}
以下为WholeFileInputFormat,其控制数据在mapreduce过程中不被切分
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class WholeFileInputFormat extends FileInputFormat<text, byteswritable=""> {
@Override
public RecordReader<text, byteswritable=""> createRecordReader(
InputSplit arg0, TaskAttemptContext arg1) throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return new WholeFileRecordReader();
}
@Override
protected boolean isSplitable(JobContext context, Path filename) {
// TODO Auto-generated method stub
return false;
}
}
以下为WholeFileRecordReader类
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class WholeFileRecordReader extends RecordReader<text, byteswritable=""> {
private FileSplit fileSplit;
private FSDataInputStream fis;
private Text key = null;
private BytesWritable value = null;
private boolean processed = false;
@Override
public void close() throws IOException {
// TODO Auto-generated method stub
// fis.close();
}
@Override
public Text getCurrentKey() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return this.key;
}
@Override
public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return this.value;
}
@Override
public void initialize(InputSplit inputSplit, TaskAttemptContext tacontext)
throws IOException, InterruptedException {
fileSplit = (FileSplit) inputSplit;
Configuration job = tacontext.getConfiguration();
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(job);
fis = fs.open(file);
}
@Override
public boolean nextKeyValue() {
if (key == null) {
key = new Text();
}
if (value == null) {
value = new BytesWritable();
}
if (!processed) {
byte[] content = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
System.out.println(file.getName());
key.set(file.getName());
try {
IOUtils.readFully(fis, content, 0, content.length);
// value.set(content, 0, content.length);
value.set(new BytesWritable(content));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
IOUtils.closeStream(fis);
}
processed = true;
return true;
}
return false;
}
@Override
public float getProgress() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return processed ? fileSplit.getLength() : 0;
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08