京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用spss软件进行信度分析_spss信度和效度分析_spss信度分析操作步骤
问卷的信度分析
一、概念:
1、信度是指测验所得到结果的一致性或稳定性,而非测验或量表本身;
2、信度值是指在某一特定类型下的一致性,非泛指一般的一致性,信度系数会因不同时间、不同受试者或不同评分者而出现不同的结果;
3、信度是效度的必要条件,非充分条件。信度低效度一定低,但信度高未必表示效度也高;
信度检验完全依赖于统计方法。
信度可分为:内在信度:对一组问题是否测量同一个概念,同时组成量表题项的内在一致性程度如何;常用的检测方法是Cronbach’s alpha系数。外在信度:对相同的测试者在不同时间测得的结果是否一致,再测信度是外在信度最常用的检验法。
二、信度指标:
1. 用信度系数来表示信度的大小。信度系数越大,表明测量的可信程度越大。究竟信度系数要多少才算有高的信度。学者DeVellis(1991)认为,0.60~0.65(最好不要);0.65~0.70(最小可接受值);0.70~0.80(相当好);0.80~0.90(非常好)。由此,一份信度系数好的量表或问卷,最好在0.80以上,0.70至0.80之间还算是可以接受的范围;分量表最好在0.70以上,0.60至0.70之间可以接受。若分量表的内部一致性系数在0.60以下或者总量表的信度系数在0.80以下,应考虑重新修订量表或增删题项。
2.信度指标多以相关系数来表示:大致可分为三类:稳定系数(跨时间的一致性)、等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
三、信度分析方法:1.重测信度法:
用同样的问卷对同一被测间隔一定时间的重复测试,也可称作测试——再测方法,计算两次测试结果的相关系数。很显然这是稳定系数,即跨时间的一致性。重测信度法适用于事实性的问卷,也可用于不易受环境影响的态度、意见式问卷。由于重测信度需要对同一样本试测两次,而被测容易受到各种事件、活动的影响,所以间隔时间需要适当。较常用者为间隔二星期或一个月。
2.复本信度法(等同信度法):
复本信度法是让被测一次填写两份问卷复本,计算两个复本的相关系数。由于这种方法要求两个复本除表达方式不同外,在内容、格式、难度和对应题项的提问方式等方面都要完全一致,所以复本信度属于等值系数。在实际的调查中,问卷很难达到这种要求,这种方法较少被采用。
3. 折半信度法:
折半信度法是指将测量项目按奇偶项分成两半,分别记分,测算出两半分数之间的相关系数(实际应用EXCEL软件),再据此确定整个测量的信度系数RXX。折半信度属于内在一致性系数,测量的是两半项目间的一致性。这种方法不适合测量事实性问卷,常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特量表。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh)),即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:rtt=2rhh/(1+rhh),求出整个量表的信度系数rtt。
4. 评分者信度:
这种方法在测量工具的标准化程度较低的情况下进行的。不同评分者的判分标准也会影响测量的信度,要检验评分者信度,可计算一个评分者的一组评分与另一个评分者的一组评分的相关系数。
5. a信度系数法:
克伦巴赫a信度系数是目前最常用的信度系数。其公式为:a=(k/k-1)*(1-(∑Si2)/ST2)
其中,K为量表中题项的总数,Si2 为第i题得分的题内方差,ST2为全部题项总得分的方差。从公式中可以看出,a系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。
在李克特量表法中常用的信度检验方法为“Cronbach’s a”系数及“折半信度”.
四、利用SPSS进行信度分析
在SPSS中,专门用来进行测验信度分析的模块为Scale下的Reliability Analysis;使用Data Reduction之下的Factor模块。
Reliability Analysis模块主要功能是检验测验的信度,主要用来检验折半信度、库李及a系数以及Hoyt信度系数值。至于重测信度和复本信度,只需将样本在二次(份)测验的分数的数据合并到同一数据文件之后,利用Correlate之下的Bivariate求其相关系数,即为重测或复本信度;而评分者信度则就就是使用的Spearman等级相关及Kendall和谐系数。
表1 Reliability Analysis模块的Model选项的参数及对应中文术语
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31