
spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解
1.Discriminant Analysis判别分析主对话框 如图 1-1 所示
图 1-1 Discriminant Analysis 主对话框
(1)选择分类变量及其范围
在主对话框中左面的矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量),
按上面的一个向右的箭头按钮,使该变量名移到右面的Grouping Variable 框中。
此时矩形框下面的Define Range 按钮加亮,按该按钮屏幕显示一个小对话框如图1-2 所示,供指定该分类变量的数值范围。
图 1-2 Define Range 对话框
在Minimum 框中输入该分类变量的最小值在Maximum 框中输入该分类变量的最大值。按Continue 按钮返回主对话框。
(2)指定判别分析的自变量
图 1-3 展开 Selection Variable 对话框的主对话框
在主对话框的左面的变量表中选择表明观测量特征的变量,按下面一个箭头按钮。
把选中的变量移到Independents 矩形框中,作为参与判别分析的变量。
(3) 选择观测量
图 1-4 Set Value 子对话框
如果希望使用一部分观测量进行判别函数的推导而且有一个变量的某个值可以作为这些观测量的标识,
则用Select 功能进行选择,操作方法是单击Select 按钮展开Selection Variable。选择框如图1-3 所示。
并从变量列表框中选择变量移入该框中再单击Selection Variable 选择框右侧的Value按钮,
展开Set Value(子对话框)对话框,如图1-4 所示,键入标识参与分析的观测量所具有的该变量值,
一般均使用数据文件中的所有合法观测量此步骤可以省略。
(4) 选择分析方法
在主对话框中自变量矩形框下面有两个选择项,被选中的方法前面的圆圈中加有黑点。这两个选择项是用于选择判别分析方法的
l Enter independent together 选项,当认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。选择该项将不加选择地使用所有自变量进行判别分析,建立全模型,不需要进一步进行选择。
l Use stepwise method 选项,当不认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。因此需要判别贡献的大小,再进行选择当鼠标单击该项时Method 按钮加亮,可以进一步选择判别分析方法。
2.Method对话框 如图 1-5 所示:
图 1-5 Stepwise Method 对话框
单击“Method”按钮展开Stepwise Method对话框。
(1)Method 栏选择进行逐步判别分析的方法
可供选择的判别分析方法有:
l Wilks’lambda 选项,每步都是Wilk 的概计量最小的进入判别函数
l Unexplained variance 选项,每步都是使各类不可解释的方差和最小的变量进入判别函数。
l Mahalanobis’distance 选项,每步都使靠得最近的两类间的Mahalanobis 距离最大的变量进入判别函数
l Smallest F ratio 选项,每步都使任何两类间的最小的F 值最大的变量进入判刑函数
l Rao’s V 选项,每步都会使Rao V 统计量产生最大增量的变量进入判别函数。可以对一个要加入到模型中的变量的V 值指定一个最小增量。选择此种方法后,应该在该项下面的V-to-enter 后的矩形框中输入这个增量的指定值。当某变量导致的V值增量大于指定值的变量后进入判别函数。
(2) Criteria 栏选择逐步判别停止的判据
可供选择的判据有:
l Use F value 选项,使用F值,是系统默认的判据当加人一个变量(或剔除一个变量)后,对在判别函数中的变量进行方差分析。当计算的F值大于指定的Entry 值时,该变量保留在函数中。默认值是Entry为3.84:当该变量使计算的F值小于指定的Removal 值时,该变量从函数中剔除。默认值是Removal为2.71。即当被加入的变量F 值为3.84 时才把该变量加入到模型中,否则变量不能进入模型;或者,当要从模型中移出的变量F值<2.71时,该变量才被移出模型,否则模型中的变量不会被移出.设置这两个值时应该注意Entry值〉Removal 值。 l Use Probability of F选项,用F检验的概率决定变量是否加入函数或被剔除而不是用F值。加入变量的F值概率的默认值是0.05(5%);移出变量的F 值概率是0.10(10%)。Removal值(移出变量的F值概率) >Entry值(加入变量的F值概率)。
(3) Display栏显示选择的内容
对于逐步选择变量的过程和最后结果的显示可以通过Display 栏中的两项进行选择:
l Summary of steps 复选项,要求在逐步选择变量过程中的每一步之后显示每个变量的统计量。
l F for Pairwise distances 复选项,要求显示两两类之间的两两F 值矩阵。
3.Statistics对话框 指定输出的统计量如图1-6 所示:
图 1-6 Statistics 对话框
可以选择的输出统计量分为以下3 类:
(l) 描述统计量
在 Descriptives 栏中选择对原始数据的描述统计量的输出:
l Means 复选项,可以输出各类中各自变量的均值MEAN、标准差std Dev 和各自变量总样本的均值和标准差。
l Univariate ANOV 复选项,对各类中同一自变量均值都相等的假设进行检验,输出单变量的方差分析结果。
l Box’s M 复选项,对各类的协方差矩阵相等的假设进行检验。如果样本足够大,表明差异不显著的p 值表明矩阵差异不明显。
(2) Function coefficients 栏:选择判别函数系数的输出形式
l Fisherh’s 复选项,可以直接用于对新样本进行判别分类的费雪系数。对每一类给出一组系数。并给出该组中判别分数最大的观测量。
l Unstandardized 复选项,未经标准化处理的判别系数。
(3) Matrices 栏:选择自变量的系数矩阵
l Within-groups correlation matrix复选项,即类内相关矩阵,
它是根据在计算相关矩阵之前将各组(类)协方差矩阵平均后计算类内相关矩阵。
l Within-groups covariance matrix复选项,即计算并显示合并类内协方差矩阵,
是将各组(类)协方差矩阵平均后计算的。区别于总协方差阵。
l Separate-groups covariance matrices复选项,对每类输出显示一个协方差矩阵。
l Total covariance matrix复选项,计算并显示总样本的协方差矩阵。
4.Classification 对话框指定分类参数和判别结果 如图1-7 所示
图 1-7 Classification 对话框
5.Save对话框,指定生成并保存在数据文件中的新变量。如图1-8 所示:
图 1-8 Save 对话框
6.选择好各选择项之后,点击“OK”按钮,提交运行Discriminant过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29