京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能或将成为解锁大数据的关键因素
我们都知道大数据的价值潜力无穷,然而如何挖掘出大数据的价值是关键。近年来,围绕着大数据以及如何更好地使用它的主题,已经展开过多次无休止的讨论,却未曾有一个大家都认同且满意的结论,这一个已经成为一个长久讨论主题。然这是一项将解锁利益和弱人工智能的技术,而后者能将整合大数据和其他渠道信息创造出许多宏伟的有益的数据图片。
人工智能或将成为解锁大数据的关键因素
大数据的大多数领域和消费者及营销有关,从这个角度而言,20世纪60年代至20世纪90年代初这个时间段就是一个黄金期,在这个时间段内,能控制商业媒体、大型报业集团、电视和广播频道的人有限。诸如《加冕街》等电视节目的超高收视率和报纸的巨大发行量意味着更快捷更不费力地将广告摆在几乎所有消费者面前变得相对容易。
消费者当权
然而,事情已经发生了根本性的变化。消费者已经获得了媒体的所有权。电视观众数量减少,报纸读者数量也直线下降,如今消费者杂志的数量是20年前的两倍多,数字录象设备TIVO、宽带的问世及普及意味着消费者能够决定他们看什么,听什么、何时看、何时听。他们还能剪去电视广告。媒体的土崩瓦解意味着公众已经处于完全自主的地位,而原先媒体的所有者却无法扭转局面。
现在消费者们都握有极大的权力。这就意味着——为了与消费者进行成功有效的沟通,品牌需要尽可能多地了解消费者,这样它们就能确保每一条产品信息都成功抵达消费者心灵。如果品牌够幸运,那么它们可能在信息被消费者拒收前让消费者为之考虑一两秒。如果失败了,品牌就没有第二次机会了。
在这样的情况下,如果你想要知道消费者在想什么以及他们可能对什么内容积极回应,那么数据和数据建模就很重要了。此外这还和“大数据及如何最好地使用大数据”息息相关。问题的答案是利用弱人工智能追踪消费者情绪以及从大数据中提取具体的相关信息。
弱人工智能的好处
弱人工智能能够做到这点是因为它具备瞬间搜索大量信息并根据上下文找出请求的特定信息以生成准确报告的能力。虽然在任何搜索中信息必须被狭隘定义,但是在狭隘定义的同时还能执行多个相关搜索的能力意味着它能提供准确模型。
跟踪几乎所有人的情绪的最好途径是监视社交媒体。目前有各种各样能提供“实时跟踪消费者评论”能力的基于弱人工智能的订阅服务。然而,它们很昂贵,且灵活性有限。
社交媒体监控咨询公司建议称,结论不应该从通过监视收集到的原始数据中马上得到。它们相信详细阅读并试图从更多的细节中找出模式非常重要。弱人工智能能做到这点,但不一定要通过目前的监控程序包,按要求制作的弱人工智能程序包将不可避免地出现。
特易购的难题
在大数据方面,弱人工智能再次成为答案,因为它能使用户基于上下文有效信息创造有价值分析。对此进行说明的最好的方法之一是运用“特易购多年来面临购物卡数据相关问题”这个例子。作为英国最大零售商,特易购拥有大量的消费者购买物品的信息,但它却不知道消费者在其商店不会购买的物品。
例如,特易购能知道个人消费者周六通常购买红酒和法式面包,但它不能确定消费者是否购买奶酪;它能知道人们购买牙刷,但不知道他们不买牙膏。
显而易见,消费者在其它商店进行补充性购物。弱人工智能被用于推敲这一情景并找到答案。接着特易购就能通过为填补消费者购物缺口而展开相应促销、或者发放优惠券跟进。
即时洞察
根据特定国家对数据的管理规定,弱人工智能还允许数据营销商将网上找到的信息添加到现有的消费者文件中。尽管在与消费者沟通过程中不能这么做,但是它在数据建模过程中的使用仍能帮助品牌所有者更好地理解消费者行为。
媒体的进一步瓦解意味着监视消费者情绪和兴趣爱好将变得越来越难。再一次,弱人工智能将成为问题的答案。它可能是一项非常简单的技术,但如果被使用正确,它将能基于对大量信息的搜索迅速创造洞察视野。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16