京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二分类模型中,如何应对分类自变量取值过多
这是个信息无限充裕的年代,是个数据爆炸的年代,也是数据过载的年代。大数据之大,不仅在于体量巨大,更在于结构和内容的复杂,因此如何处理好数据一直是我们工作少为人知、却也无法忽视的重点。本期,我们就以二分类模型中自变量取值过载为例,给大家讲讲应对之道~
在二分类建模过程中,难免会遇到分类自变量取值过多的情况,比如用来表示观测值地域属性的自变量,在我国即使选用省级层面的信息,最多也可达31种取值。处理分类自变量时,最常用的方法是将其拆分为若干取值为“0”和”1”的二分变量,这样就会导致模型的维度过多,自由度降低,不仅对建模样本提出了更高的要求,还增加了模型参数估计的难度和模型的训练时间。因此,今天我们基于自己的经验,在这里谈谈对这个问题的处理思路。
一、利用聚类算法进行类别合并
既然这个问题是分类变量取值过多导致的,那么,最直接的解决思路显然就是对类别进行合并。当然,合并不能是主观随意的,而应该是基于定量分析之后的结果。为了便于叙述,不妨假设某个分类型自变量X有A1,A2,…,An等取值,我们可以计算出每个类别中实际的Y=1比例。具体计算过程如下表所示:
然后就可以利用聚类分析来进行类别的合并了。第一种思路是采用系统聚类法,将A1,A2,…,An看做聚类的对象,各个类别的Y=1比例作为指标进行聚类,即有n个聚类对象,1个聚类指标。聚类结束之后,将聚为一类的类别进行合并。当然,究竟聚为几类最合适,还可以采用一些指标来辅助确定,比如SAS软件中的R-square、半偏态R-square以及伪F统计量等,都可以用来辅助确定类的个数。
第二种思路就是采用有序样品的聚类,长期关注我们公众号的小伙伴可能还记得,我们在前期的文章中曾经利用这个方法来进行数据离散化,这里我们利用这个方法进行类别的合并,处理起来也比较简单,将各个类别按照Y=1比例从小到大的顺序进行排列,再利用Fisher算法将Y=1比例相近的类别进行合并。这样做最大的好处是我们可以根据信息损失,得到最优的类别个数和相应的最优合并方法。
二、利用决策树进行类别合并
利用决策树进行类别合并时,首先需要选择一个衡量分类变量之间相关性或影响程度的指标,我们可以使用在前期的文章中曾经介绍过IV信息量或一致性比率。这种类别合并的基本步骤可以表示为:
1、将各个类别按照Y=1比例从小到大的顺序进行排列,并将所有类别视为一个组;
2、利用IV信息量(或者一致性比率),找出最优的二元分割方法,使得被选中的分组方案是所有分组方案中预测能力最强的,这样将所有类别分成了两组,不妨假设为组1和组2;
3、将组1按照上一步同样的步骤分为组11和组12,组2分为组21和组22。再利用IV信息量比较组1和组2的最优分组的预测能力大小,取预测能力最强的组进行分裂,这样将所有类别分成了三组,不妨假设为组1、组2和组3。
然后,按照第3步的做法不断分裂下去,直到分裂形成的组数达到预先设定的个数为止。如果因变量是二分变量,可以使用IV信息量或一致性比率;如果因变量的取值个数大于2,那么就可以使用一致性比率来进行预测力的判断。《SAS编程与数据挖掘商业案例》一书种提供了一份观测值为32264的数据集,其中因变量是二分变量,有一个分类自变量LOCATION有19种可能的取值,我们利用这里介绍的算法对变量LOCATION进行合并,将合并后的类别个数设定为5,下图是分裂的具体过程:
其中原始的19个变量记为B1,B2,…,B19,经过4次分裂,19个取值最后被分为5个组,圆圈里面的表示的就是这5个组里面包括的原始变量名称,每个方框下面对应的数字表示该步分裂所对应的顺序。由于采用的是自上而下的分裂算法,很显然,分裂后保留的组数越多,算法所耗费的时间也就越长。
三、WOE编码
WOE就是所谓的证据权重(weight of evidence),该方法计算出分类变量每一个类别的WOE值,这样就可以用这个WOE值组成的新变量来替代原来的分类变量。由于新变量是数值型变量,因此该方法实际是将分类变量转化为数值变量,不用再生成虚拟变量,避免了由此产生的维度过多的问题。我们用下面的表格来表示WOE值的计算过程:
注:LN表示自然对数函数。
从上表可以看出,WOE值实际上是该类别中Y=1与Y=0比例之比的自然对数。需要注意的是,该表的Y=1比例与上一张表的Y=1比例计算方式是不一样的,上一张表的Y=1比例是该类别中Y=1观测个数与该类别所有观测个数之比,而这一张表示该类别Y=1观测个数与样本中所有Y=1观测个数之比。WOE编码法在利用logistic模型建立信用评分卡时应用较多。
四、小结
比较而言,前两种类别合并的方法,虽然减少了类别个数,但是仍然需要生成若干二分变量;当使用一致性比率进行预测力判断时,第二种方法也适用于多分类模型;第三种方法将分类变量直接转化为数值型变量,模型简洁,易于操作。但是如果出现类别中Y=1或者Y=0个数为零的情况,将导致WOE值无法计算。因此,也可以将两种方法结合起来,先进行简单的类别合并,避免Y=1或者Y=0个数为零的情况,然后再进行WOE编码。
总之,数据的世界是日益复杂的,大数据尤其如此。在面对繁复的海量数据时,我们需要很多方法和经验,将数据转化成更简洁有效的信息;希望大家能从本文中得到一点启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22