
如何对数据源进行分析
一位同事正在做数据探索,我问他“数据探索有什么开发方法?”他回答道,“没有固定的开发方法 ,就是看看数据,做做简单的统计。”
至此,先解释一下,什么是数据探索,数据探索是对数据进行初步研究处理,目的是为了更好的理解其特殊性质,以便后来选择合适的数据预处理和数据分析技术。包括汇总统计、可视化、OLAP和多维数据分析等等。
有过数据分析基础的同学可能会笑话我这位同事菜鸟。其实并不是没有开发方法,只是没有形成模式。如果一位即将进行此项工作的人,面对一堆数据,他该怎么办?我想第一个需要弄清楚的是“这样做的目的是什么”。如果他对数据不熟悉,答案可能是"搞清楚这些数据结构和关系"。如果他要做的是数据挖掘工作中的一部分工作,这个答案可能是,"哪些客户群是需要关注的?考虑哪些因素?"而对于后者,如果他对于数据还不是非常熟悉的话,恐怕还是得像前者一样,搞清楚数据结构。
曾经做过一些数据源分析的工作,是为了定义生产系统开发和经营分析系统开发之间的接口,工作的目的就是搞清楚数据结构。这种目的不算非常强,所以采取的方式是首先确定大范围,再逐个表分析,给出表的定义,约束关系以及和其他表的关系。例如需要分析客户、帐务、业务使用的数据,而资源、数据业务的先不管,缩小范围。一般来说,这个范围可以缩到很小,数量级在20以内是个不错的选择。如果太多数据只会让人产生恐惧,难以入手。但其实最终需要分析的表肯定超出20个,因为沿着表之间的关系,能够引出一些新的需要分析的表。
虽然一般都会有数据字典帮助你理解数据,可几乎这些文档都只是记录了表结构,表名、主键、外键参照等,而字段之间的逻辑关系,表的概念定义很少见到。例如对于一个用户表,到底这个表里面存放的数据表示什么业务含义呢?找不到这样的信息,如果说这张表中存放了所有的用户(假设我们已经给用户一个定义,客户定购某种产品的契约关系),那么这个“所有”是指历史上所有出现过的用户?或是当前活动的用户?
要是对业务熟悉,脑中已经有个概念模型,很快就可以切入重点,三户关系如何设计的?销帐流程是怎样在数据中体现的?预存、托收、赠送费用都如何体现的?带着这些问题去探索数据,当然是事半功倍,可以将这些问题看作为更进一步的探索目的。
说了这么多,探索数据分析就是一个三步曲:
1、明确目的——探索数据为了什么?能不能带着问题进去啊?
2、分门别类——根据主题缩小范围,对字段进行分组
3、去芜存菁——挑选重点的字段,用样本观察
上面都是在说如何理解数据结构和含义,也将它叫做"数据探索"的一部分了,当然如果是数据挖掘,其数据探索步骤还有更强的目的性,这个不做细谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17