京公网安备 11010802034615号
经营许可证编号:京B2-20210330
要搞好数据挖掘,还是得先整明白这张图……
《哈佛商业评论》称数据科学家为21世纪最性感的职业,性感一词,充分表达着其中说不出的诱惑和吸引。而数据,作为这一切的根源,更是扮演着极其重要且神秘的角色。没有数据,一切皆是空谈,有了数据,所有的分析和挖掘都有了寄托。
然而,要搞好数据挖掘,可没那么简单,你得有一套正确的招式款待她!一套完善的流程招呼她!
何为CRISP-DM?
CRISP-DM(cross-industry standard process for data mining), 即"跨行业数据挖掘标准流程",它是由NCR、OHRA、SPSS、Daimler-Benz等企业一起开发出来的、目前业界使用最为广泛的数据挖掘方法论。
CRISP-DM模型为一个KDD(知识发现)工程提供了一个完整的过程描述,将一个KDD工程分为6个不同的、但顺序并非完全不变的阶段。CRISP-DM没有特定的工具限制,也没有特定领域局限,是适用于所有行业的标准方法论。
1.商业理解
首先,我们必须从商业的角度了解项目的要求和最终目的是什么,并将这些目的与数据挖掘的定义以及结果结合起来。任何脱离业务的数据分析和挖掘都是瞎胡闹。
本阶段的主要工作包括:确定商业目标,发现影响结果的重要因素,从商业角度描绘客户的首要目标,评估形势,查找所有的资源、局限、设想以及在确定数据分析目标和项目方案时考虑到的各种其他的因素,包括风险和意外、相关术语、成本和收益等等,接下来确定数据挖掘的目标,并制定项目计划。
2.数据理解
数据理解阶段开始于数据的收集工作。接下来就是熟悉数据,具体如:检测数据的量,对数据有初步的理解,探测数据中比较有趣的数据子集,进而形成对潜在信息的假设。收集原始数据,对数据进行装载,描绘数据,并且探索数据特征,进行简单的特征统计,检验数据的质量,包括数据的完整性和正确性,缺失值的填补等。
3.数据准备
在建立数据挖掘模型之前对数据做最后的准备工作,主要是把收集到的各部分数据关联起来,形成一张最终数据宽表。这个阶段其实是耗时最长的阶段,一般会占据整个数据挖掘项目的70%左右的时间,包括数据导入、数据抽取、数据清洗、数据合并、新变量计算等。
数据准备工作有可能被实施多次,而且其实施顺序并不是预先规定好的。
4.模型构建
模型构建是数据挖掘工作的核心阶段。主要包括准备模型的训练集和验证集、选择并使用适当的建模技术和算法、模型建立、模型效果对比等工作。
在这一阶段,各种各样的建模方法将被加以选择和使用。通过建造、评估模型将其参数校准为最为理想的值。比较典型的是,对于同一个数据挖掘的问题类型,可以有多种方法选择使用。如果有多重技术要使用,那么在这一任务中,对于每一个要使用的技术要分别对待。
有一些建模方法对数据的形式有具体的要求,因此,在这一阶段,重新回到数据准备阶段执行某些任务有时是非常必要的。
5.模型评估
从数据分析的角度考虑,在这一阶段中,已经建立了一个或多个高质量的模型。但在进行最终的模型部署之前,更加彻底地评估模型,回顾在构建模型过程中所执行的每一个步骤,是非常重要的,这样可以确保这些模型是否达到了企业的目标。
一个关键的评价指标就是,看是否仍然有一些重要的企业问题还没有被充分地加以注意和考虑。在这一阶段结束之时,有关数据挖掘结果的使用应达成一致的决定。
模型评估主要从两个方面进行评价:
技术层面:设计对照组进行比较;根据常用的模型评估指标进行评价,如命中率、覆盖率、提升度等;
业务经验:业务专家凭借业务经验对数据挖掘结果进行评估。
6.模型部署
将数据挖掘成果程序化,将模型写成存储过程固化到IT平台上,并持续观察模型衰退变化,在发生模型衰退时,引入新的变量进行模型优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01