京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分类-回归树模型(CART)在R语言中的实现
CART模型 ,即Classification And Regression Trees。它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法。如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树。
决策树是一种倒立的树结构,它由内部节点、叶子节点和边组成。其中最上面的一个节点叫根节点。 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述。构造决策树的目的是找出属性和类别间的关系,一旦这种关系找出,就能用它来预测将来未知类别的记录的类别。这种具有预测功能的系统叫决策树分类器。其算法的优点在于:
1)可以生成可以理解的规则。
2)计算量相对来说不是很大。
3)可以处理多种数据类型。
4)决策树可以清晰的显示哪些变量较重要。
下面以一个例子来讲解如何在R语言中建立树模型。为了预测身体的肥胖程度,可以从身体的其它指标得到线索,例如:腰围、臀围、肘宽、膝宽、年龄。
#首先载入所需软件包
library(mboost)
library(rpart)
library(maptree)
#读入样本数据
data('bodyfat')
#建立公式
formular=DEXfat~age+waistcirc+hipcirc+elbowbreadth+kneebreadth
#用rpart命令构建树模型,结果存在fit变量中
fit=rpart(formula,method='avova',data=bodyfat)
#直接调用fit可以看到结果
n= 71
node), split, n, deviance, yval
* denotes terminal node
1) root 71 8535.98400 30.78282
2) waistcirc< 88.4 40 1315.35800 22.92375
4) hipcirc< 96.25 17 285.91370 18.20765 *
5) hipcirc>=96.25 23 371.86530 26.40957
10) waistcirc< 80.75 13 117.60710 24.13077 *
11) waistcirc>=80.75 10 98.99016 29.37200 *
3) waistcirc>=88.4 31 1562.16200 40.92355
6) hipcirc< 109.9 13 136.29600 35.27846 *
7) hipcirc>=109.9 18 712.39870 45.00056 *
#也可以用画图方式将结果表达得更清楚一些
draw.tree(fit)
#建立树模型要权衡两方面问题,一个是要拟合得使分组后的变异较小,另一个是要防止过度拟合,而使模型的误差过大,前者的参数是CP,后者的参数是Xerror。所以要在Xerror最小的情况下,也使CP尽量小。如果认为树模型过于复杂,我们需要对其进行修剪
#首先观察模型的误差等数据
printcp(fit)
Regression tree:
rpart(formula = formula, data = bodyfat)
Variables actually used in tree construction:
[1] hipcirc waistcirc
Root node error: 8536/71 = 120.23
n= 71
CP nsplit rel error xerror xstd
1 0.662895 0 1.00000 1.01364 0.164726
2 0.083583 1 0.33710 0.41348 0.094585
3 0.077036 2 0.25352 0.42767 0.084572
4 0.018190 3 0.17649 0.31964 0.062635
5 0.010000 4 0.15830 0.28924 0.062949
#调用CP(complexity parameter)与xerror的相关图,一种方法是寻找最小xerror点所对应的CP值,并由此CP值决定树的大小,另一种方法是利用1SE方法,寻找xerror+SE的最小点对应的CP值。
plotcp(fit)
#用prune命令对树模型进行修剪(本例的树模型不复杂,并不需要修剪)
pfit=prune(fit,cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])
#模型初步解释:腰围和臀围较大的人,肥胖程度较高,而其中腰围是最主要的因素。
#利用模型预测某个人的肥胖程度
ndata=data.frame(waistcirc=99,hipcirc=110,elbowbreadth=6,kneebreadth=8,age=60)
predict(fit,newdata=ndata)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22