
数据分析这几个坑,切勿越陷越深
数据具有客观性,能呈现令人信服的信息依据,所以探寻数据、挖掘规律成为了寻找所需信息的最有利手段之一。但数据也并非万能,有时候会传递错误的信息。在梳理数据分析流程和数据打交道的过程中,“聪明的数据分析师”经常会犯一些错误,导致分析结论于实际经验呈现较大的偏差。
因此,这里总结了数据分析过程中的几个深坑,以告诫大家警惕这几个误区。
坑1:样本容量差异导致结论偏差
某年篮球比赛,A球员的三分投篮命中率为42%,B球员的三分投篮命中率为28%,那么能否说明A球员的三分投篮命中率要比B球员高?
我们分析了数据的来源,发现那年比赛,A球员所在团队只打了10场球,投了28个三分球;B球员所在团队打了19场球,投了57个三分球。
因此,两者对比的样本容量不同,样本环境不同,单从这一数据来做评价,有失偏颇。
所以在选取样本对照时,要保证其它变量一致,提高结论分析的科学性。
2、逻辑混乱,不知因果关系
有同学会笑话,这样简单的逻辑也会搞错,没错,就是这样。
最简单的电商,比如你认为商品评论数和销售量成正相关的关系,即一个商品的评论数量越多,那商品的销售额也会越高;或者相反,一个商品的销售量越多,评论数也会越高,两者是相辅相成的关系。
假如你认定前者,数据分析的结论就会指导我们用一些手段来创造更多的商品评论,以此带动商品销量。
但事实上,并不是所有的商品销量都和评论有很大关联,正向思考一下,商品的销量和价格、质量、活动、广告、页面等等诸多因素有关,每个因素都占据一定权重,销量低应该从不足的地方补上。
因此,在分析前应后果时,要明确目的和逻辑关系,以免混乱。
3、数据表达不科学被蒙蔽
从以上图表来看,似乎第二幅图的结果更喜人,整体均衡向上,左边的数据差异就比较大。
但事实上,两个图表的数据都一样,只是改变了纵坐标值轴的范围,却改变了人的视觉印象。
因此,在做数据分析时,我们需要警惕一些数据处理的小伎俩,不要被数据的视觉效果所蒙蔽。同时在做这类数据分析时,值轴的选取要合理科学,按标准来。
4、唯“数据”论
经常会有人义正言辞地将“用数据说话”,这在有些场景是合理的,但如果过度依赖数据,一方面会做很多没有价值的数据分析;另一方面,也会限制对业务本身的实际思考。
数据分析,仍以“业务”为主,业务的分析一方面来源经验的判断,另一方面依靠数据的辅助分析。很多优秀甚至伟大的产品决策,并非通过数据发现。
很多企业会将数据分析技术交由信息IT部门,而需求者却是业务人员,两者沟通不畅相互脱节会造成很多问题。所以不管是业务人员通过FineBI这一类BI工具的使用,来自助进行分析,参考数据结果来做分析;或是业务人员参与日常报表和数据可视化的开发,都是解决这一类问题的有效途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02