京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这几个坑,切勿越陷越深
数据具有客观性,能呈现令人信服的信息依据,所以探寻数据、挖掘规律成为了寻找所需信息的最有利手段之一。但数据也并非万能,有时候会传递错误的信息。在梳理数据分析流程和数据打交道的过程中,“聪明的数据分析师”经常会犯一些错误,导致分析结论于实际经验呈现较大的偏差。
因此,这里总结了数据分析过程中的几个深坑,以告诫大家警惕这几个误区。
坑1:样本容量差异导致结论偏差
某年篮球比赛,A球员的三分投篮命中率为42%,B球员的三分投篮命中率为28%,那么能否说明A球员的三分投篮命中率要比B球员高?
我们分析了数据的来源,发现那年比赛,A球员所在团队只打了10场球,投了28个三分球;B球员所在团队打了19场球,投了57个三分球。
因此,两者对比的样本容量不同,样本环境不同,单从这一数据来做评价,有失偏颇。
所以在选取样本对照时,要保证其它变量一致,提高结论分析的科学性。
2、逻辑混乱,不知因果关系
有同学会笑话,这样简单的逻辑也会搞错,没错,就是这样。
最简单的电商,比如你认为商品评论数和销售量成正相关的关系,即一个商品的评论数量越多,那商品的销售额也会越高;或者相反,一个商品的销售量越多,评论数也会越高,两者是相辅相成的关系。
假如你认定前者,数据分析的结论就会指导我们用一些手段来创造更多的商品评论,以此带动商品销量。
但事实上,并不是所有的商品销量都和评论有很大关联,正向思考一下,商品的销量和价格、质量、活动、广告、页面等等诸多因素有关,每个因素都占据一定权重,销量低应该从不足的地方补上。
因此,在分析前应后果时,要明确目的和逻辑关系,以免混乱。
3、数据表达不科学被蒙蔽
从以上图表来看,似乎第二幅图的结果更喜人,整体均衡向上,左边的数据差异就比较大。
但事实上,两个图表的数据都一样,只是改变了纵坐标值轴的范围,却改变了人的视觉印象。
因此,在做数据分析时,我们需要警惕一些数据处理的小伎俩,不要被数据的视觉效果所蒙蔽。同时在做这类数据分析时,值轴的选取要合理科学,按标准来。
4、唯“数据”论
经常会有人义正言辞地将“用数据说话”,这在有些场景是合理的,但如果过度依赖数据,一方面会做很多没有价值的数据分析;另一方面,也会限制对业务本身的实际思考。
数据分析,仍以“业务”为主,业务的分析一方面来源经验的判断,另一方面依靠数据的辅助分析。很多优秀甚至伟大的产品决策,并非通过数据发现。
很多企业会将数据分析技术交由信息IT部门,而需求者却是业务人员,两者沟通不畅相互脱节会造成很多问题。所以不管是业务人员通过FineBI这一类BI工具的使用,来自助进行分析,参考数据结果来做分析;或是业务人员参与日常报表和数据可视化的开发,都是解决这一类问题的有效途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16