
工业大数据到底是什么及未来发
随着德国工业4.0等制造智能化转型战略的相继实施,工业大数据是近来的热门话题,那么到底什么是工业大数据以及在未来发展中它会给我们带来什么?
1、工业大数据概念与特征
工业数据是指在工业领域信息化应用中所产生的数据。工业大数据是基于工业数据,运用先进大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。工业数据从来源上主要分为信息管理系统数据、机器设备数据和外部数据。信息管理系统数据是指传统工业自动化控制与信息化系统中产生的数据,如ERP、MES等。机器设备数据是来源于工业生产线设备、机器、产品等方面的数据,多由传感器、设备仪器仪表进行采集产生。外部数据是指来源于工厂外部的数据,主要包括来自互联网的市场、环境、客户、政府、供应链等外部环境的信息和数据。
工业大数据具有五大特征。一是数据体量大,主要表现在随着设备数据和互联网数据的涌入,工业数据的存储量将达到EB级别。二是数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等。三是结构复杂,有结构化、半结构化和非结构化等不同类型。四是数据速度需求多样化,有要求实时、半实时和离线三种,生产层级要求实时性,需要达到毫秒级别;管理层级实时性要求不高。五是数据价值不均匀,20%的数据具有80%的价值密度(如产品图纸、试验分析、 加工工艺);80%的数据密度只有20%,需要分析挖掘(如工况情况、图片数据)。
与互联网大数据相比,工业大数据具有自身特点:一是多源性获取,数据分散,非结构化数据比例大;二是数据蕴含信息复杂,关联性强;三是持续采集,具有鲜明的动态时空特性;四是采集、存贮、处理实时性要求高;五是与具体工业领域密切相关。
先进制造企业基于工业大数据的应用,把产品、机器、资源和人有机结合在一起,推动制造业向基于大数据分析与应用基础上的智能化转型。工业大数据能够促进形成企业和消费者之间的信息主动反馈机制,为完善以客户需求为导向的产品全生命周期信息集成和跟踪服务、建立以服务为核心的整体解决方案提供可行路径,将大大提升产品服务价值,为制造业转型升级开辟了新途径。
2、工业大数据发展态势
随着信息化和工业化融合,工业企业生产信息数字化,积累大量数据。工业网络、数据采集、集成、计算和分析技术在工业领域的应用,促使工业数据发挥巨大价值。工业大数据越来越受到工业企业的关注。目前工业大数据发展态势有三个,一是已从理念转向实践,二是工业大数据成为云计算的价值体现,三是工业大数据孕育丰富的工业应用生态。
随着信息化和工业化融合的不断推进和大数据采集、集成、计算和分析技术的发展,很多工业企业已经进入工业大数据实践阶段。大型工业企业在应用方面走在前列。如唐山钢铁集团,通过引入国际最先进的生产线,已实现数据实时采集,深度挖掘工业大数据价值,实现生产实时监测、生产排程、产品质量管理、能源管控等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08