京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与区间估计学习笔记
鉴于区间估计的理论与方法可以在任意一本统计学教程中找到,故这里只是单纯的介绍R语言中区间估计的函数与一些自己编写的区间估计函数。
一、单正态总体的参数估计
1、 方差已知时的均值估计
z.test<-function(x,n,sigma,a,u0,alt){
result<-list()
mean<-mean(x)
result$interval<-c(mean-sigma*qnorm(1-a/2,0,1)/sqrt(n),mean+sigma*qnorm(1-a/2,0,1)/sqrt(n))
z<-(mean-u0)/(sigma/sqrt(n))
p<-pnorm(z,lower.tail=F) #函数笔记:lower.tail是真的话,得出的就是X<=x的分位数,为假的话就是用P(X>x)的办法寻找这个值。一般我们用默认的真就可以了
result$z<-z
result$p.value<-p #通过P值判定参数估计效果
if(alt==2)
reslut$p.value<-2*pnorm(abs(z),lower.tail=F)
else
reslut$p.value<-pnorm(z)
reslut#函数笔记:如果函数的结果需要有多个返回值,可以创建一个list(),并返回该对象。也可以用return()函数,设定返回值。但是一个函数的返回的对象只有一个。
}
2、 方差未知时的均值估计
在小样本中,我们通常使用R语言的内置函数t.test()调用格式:
t.test(x, y = NULL,
alternative = c("two.sided", "less","greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)
对于大样本,我们可以使用样本方差代替总体方差,使用z.test()处理
3、 方差的区间估计
chisq.var.test<-function(x,n,a,alt=2,sigma0=1)
{
result<-list()
v<-var(x)
result$interval<-c((n-1)*v/qchisq(1-a/2,n-1,lower.tail=T),(n-1)*v/qchisq(a/2,n-1,lower.tail=T))
chi2<-(n-1)*v/sigma0
result$chi2<-chi2
p<-pchisq(chi2,n-1)
if(alt==2)
result$p.value<-2*min(pchisq(chi2,n-1),pchisq(chi2,n-1,lower.tail=F))
else
result$p.value<-pchisq(chi2,n-1,lower.tail=F)
result
}
这里虽然用fisher引理知道利用卡方分布来处理,但是我们不用chisq.test()来命名这个函数,因为R的内置函数中有chisq.test().如果我们这样命名函数,会导致卡方检验时使用有些许不便。
二、两正态总体参数的区间估计
1、 两方差都已知时两均值差的置信区间
two.sample.sigmaknown<-function(x,y,conf.level=0.95,sigma1,sigma2,alt=c("twosides","less","greater"))
{
n1<-length(x)
n2<-length(y)
x_<-mean(x)-mean(y)
a<-1-conf.level
z1<-qnorm(1-a/2)*sqrt(sigma1/n1+sigma2/n2)
z2<-qnorm(1-a)*sqrt(sigma1/n1+sigma2/n2)
if(alt=="two sides")
x_ +c(-z1,z1)
else if(alt=="less")
x_ -z2
else
x_ +z2
}
注:对于大样本,我们可以以样本标准差代替总体方差来进行区间估计
2、 两方差都未知但相等时两均值差的置信区间
直接使用t.test()函数即可
注:由于对于一般情形估计的方法特别多,可以使用neyman的枢轴量法亦可以使用fisher的信仰推断(通常认为后者较好)。故在此不予介绍
3、 两方差比的置信区间 数据分析培训
仔细阅读方差比的区间估计内容,我们应该注意到,两样本在做方差比估计时应该需要做正态性检验,在R中,你可以使用函数shapiro.test()来实现,该检验对数据的正态性是给与保护的。
使用var.test()函数,调用格式如下:
var.test(x, y, ratio = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)
最后,我想解释一下置信水平的含义,我们所说的置信水平是指用这样的办法对数据进行100次估计,包含真值的次数为100*conf.level。这里的估计是指对不同数据用同样方法进行估计。我们可以编写一个R函数来验证一下:
judge<-rep(0,1000)
for(i in 1:1000){
set.seed(5*i)
if(t.test(rnorm(100000,5,17))$conf.int[1]<=5&5<=t.test(rnorm(100000,5,17))$conf.int[2])
judge[i]<-0
else
judge[i]<-1
}
table(judge)
输出结果:
#judge
# 0 1
#954 46
#从这里来看,估计达到95%的置信水平
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22