
R语言与区间估计学习笔记
鉴于区间估计的理论与方法可以在任意一本统计学教程中找到,故这里只是单纯的介绍R语言中区间估计的函数与一些自己编写的区间估计函数。
一、单正态总体的参数估计
1、 方差已知时的均值估计
z.test<-function(x,n,sigma,a,u0,alt){
result<-list()
mean<-mean(x)
result$interval<-c(mean-sigma*qnorm(1-a/2,0,1)/sqrt(n),mean+sigma*qnorm(1-a/2,0,1)/sqrt(n))
z<-(mean-u0)/(sigma/sqrt(n))
p<-pnorm(z,lower.tail=F) #函数笔记:lower.tail是真的话,得出的就是X<=x的分位数,为假的话就是用P(X>x)的办法寻找这个值。一般我们用默认的真就可以了
result$z<-z
result$p.value<-p #通过P值判定参数估计效果
if(alt==2)
reslut$p.value<-2*pnorm(abs(z),lower.tail=F)
else
reslut$p.value<-pnorm(z)
reslut#函数笔记:如果函数的结果需要有多个返回值,可以创建一个list(),并返回该对象。也可以用return()函数,设定返回值。但是一个函数的返回的对象只有一个。
}
2、 方差未知时的均值估计
在小样本中,我们通常使用R语言的内置函数t.test()调用格式:
t.test(x, y = NULL,
alternative = c("two.sided", "less","greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)
对于大样本,我们可以使用样本方差代替总体方差,使用z.test()处理
3、 方差的区间估计
chisq.var.test<-function(x,n,a,alt=2,sigma0=1)
{
result<-list()
v<-var(x)
result$interval<-c((n-1)*v/qchisq(1-a/2,n-1,lower.tail=T),(n-1)*v/qchisq(a/2,n-1,lower.tail=T))
chi2<-(n-1)*v/sigma0
result$chi2<-chi2
p<-pchisq(chi2,n-1)
if(alt==2)
result$p.value<-2*min(pchisq(chi2,n-1),pchisq(chi2,n-1,lower.tail=F))
else
result$p.value<-pchisq(chi2,n-1,lower.tail=F)
result
}
这里虽然用fisher引理知道利用卡方分布来处理,但是我们不用chisq.test()来命名这个函数,因为R的内置函数中有chisq.test().如果我们这样命名函数,会导致卡方检验时使用有些许不便。
二、两正态总体参数的区间估计
1、 两方差都已知时两均值差的置信区间
two.sample.sigmaknown<-function(x,y,conf.level=0.95,sigma1,sigma2,alt=c("twosides","less","greater"))
{
n1<-length(x)
n2<-length(y)
x_<-mean(x)-mean(y)
a<-1-conf.level
z1<-qnorm(1-a/2)*sqrt(sigma1/n1+sigma2/n2)
z2<-qnorm(1-a)*sqrt(sigma1/n1+sigma2/n2)
if(alt=="two sides")
x_ +c(-z1,z1)
else if(alt=="less")
x_ -z2
else
x_ +z2
}
注:对于大样本,我们可以以样本标准差代替总体方差来进行区间估计
2、 两方差都未知但相等时两均值差的置信区间
直接使用t.test()函数即可
注:由于对于一般情形估计的方法特别多,可以使用neyman的枢轴量法亦可以使用fisher的信仰推断(通常认为后者较好)。故在此不予介绍
3、 两方差比的置信区间 数据分析培训
仔细阅读方差比的区间估计内容,我们应该注意到,两样本在做方差比估计时应该需要做正态性检验,在R中,你可以使用函数shapiro.test()来实现,该检验对数据的正态性是给与保护的。
使用var.test()函数,调用格式如下:
var.test(x, y, ratio = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)
最后,我想解释一下置信水平的含义,我们所说的置信水平是指用这样的办法对数据进行100次估计,包含真值的次数为100*conf.level。这里的估计是指对不同数据用同样方法进行估计。我们可以编写一个R函数来验证一下:
judge<-rep(0,1000)
for(i in 1:1000){
set.seed(5*i)
if(t.test(rnorm(100000,5,17))$conf.int[1]<=5&5<=t.test(rnorm(100000,5,17))$conf.int[2])
judge[i]<-0
else
judge[i]<-1
}
table(judge)
输出结果:
#judge
# 0 1
#954 46
#从这里来看,估计达到95%的置信水平
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18