京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何在商业银行领域发挥价值
商业银行战略规划的制定,需要海量数据,但目前,行外数据基本未被纳入银行数据库,行内数据受数据安全等制度约束,使用不足。未来大数据要在商业银行战略领域发挥价值,需要大数据服务外包商,不仅提供各种基础数据,而且提供大数据人才。
近两年,大数据如何应用一直是各方探索的重点。所谓大数据,是在计算机存储能力、计算能力、计算技术、计算速度大幅增长的基础上,对海量数据复杂处理的产物。大数据常常被定义为海量数据“需要新处理模式”才能发挥巨大价值,这也说明其是计算机技术高速发展的产物。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
银行战略规划需要海量数据
从逻辑上讲,银行管理中没有哪个板块比战略规划更需要大数据。世界经济形势、各国货币和财政政策、政治地缘关系、大宗商品价格、国际贸易状况、局部战争等国际问题,都可能影响中国进出口贸易,影响国内企业经营状况、影响某个产业的发展趋势,商业银行在制定战略规划涉及到是否走出国门、选择战略业务方向时,就不能不考虑国际政治、经济问题,而且银行规模越大,其意义也越大。
同样的问题反映在国内,则需要关注中国经济周期、经济形势、国家发展战略、产业政策、货币政策、财政政策、区域政策、地区间经济差异、各行各业发展现状及趋势等。一个商业银行如果制定三年、五年甚至更长时期的发展战略,这些问题显然不能不考虑。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
现状:行内数据相对完善 行外数据基本未入库
理想很丰满,现实总是很骨感。制定商业银行战略时,国外、国内、行内的数据显然越多越好,而现实情况是,商业银行很少将行外数据纳入其信息规划主流数据仓库,行外数据经常以原始数据来源格式存储在战略规划制定部门的数据文件夹中,有时还要根据需要到付费数据服务商处查询。
产生这种情况的原因有很多:
首先,数据范围广。对战略制定来说,数据是“韩信点兵、多多益善”,恰恰是这个多多益善,导致商业银行很难自己构建数据库来满足战略规划制定;
其次,数据不规范。需要的数据越多,数据的规范性越差,导致图片、视频、音频、文字等各种数据格式都有,将各种格式的数据归类、整理、清洗并建模,获得有价值的决策支持信息,难度非常大;
第三,单体数据价值小。对战略规划来说,每个信息都有价值,但具体到各类数据,其价值却可能不大,因此,在数据采集时,要获得信息管理部门的同意和支持,并整理入库的难度非常大;
第四,成本问题。虽然理论上讲,大数据分析是有价值的,但现实是,成本是显性的,收益是隐性的,特别是战略决策虽然基于大量的数据分析,但最终的决策却存在很大的主观性,定性的判断、领导的判断在战略方向的选择上,处于非常重要的位置。因此,成本问题也是约束大数据在战略决策中价值发挥的“拦路虎”。
综合来看,虽然大数据概念产生和广泛使用已有一定时间,但商业银行战略规划制定过程中的作用并不大。行外数据基本与数据库无缘,行内数据的完整性、有效性虽然完善了很多,但由于数据安全等制度约束,数据使用的便捷性和灵活性还存在很大不足。
未来前景:大数据外包服务商和人才外包
大数据在商业银行战略制定中的价值开发,必须考虑商业银行的特性。一方面,商业银行从大到小,规模相差几千倍甚至上万倍,不同等级的商业银行在成本投入、人才储备等方面的差距也很大;另一方面,不同类型的商业银行,对数据需求的着力点也不一样,大型商业银行更看重国际形势、国内形势、行业趋势,小银行更看重国内形势、区域特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01