京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何在商业银行领域发挥价值
商业银行战略规划的制定,需要海量数据,但目前,行外数据基本未被纳入银行数据库,行内数据受数据安全等制度约束,使用不足。未来大数据要在商业银行战略领域发挥价值,需要大数据服务外包商,不仅提供各种基础数据,而且提供大数据人才。
近两年,大数据如何应用一直是各方探索的重点。所谓大数据,是在计算机存储能力、计算能力、计算技术、计算速度大幅增长的基础上,对海量数据复杂处理的产物。大数据常常被定义为海量数据“需要新处理模式”才能发挥巨大价值,这也说明其是计算机技术高速发展的产物。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
银行战略规划需要海量数据
从逻辑上讲,银行管理中没有哪个板块比战略规划更需要大数据。世界经济形势、各国货币和财政政策、政治地缘关系、大宗商品价格、国际贸易状况、局部战争等国际问题,都可能影响中国进出口贸易,影响国内企业经营状况、影响某个产业的发展趋势,商业银行在制定战略规划涉及到是否走出国门、选择战略业务方向时,就不能不考虑国际政治、经济问题,而且银行规模越大,其意义也越大。
同样的问题反映在国内,则需要关注中国经济周期、经济形势、国家发展战略、产业政策、货币政策、财政政策、区域政策、地区间经济差异、各行各业发展现状及趋势等。一个商业银行如果制定三年、五年甚至更长时期的发展战略,这些问题显然不能不考虑。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
现状:行内数据相对完善 行外数据基本未入库
理想很丰满,现实总是很骨感。制定商业银行战略时,国外、国内、行内的数据显然越多越好,而现实情况是,商业银行很少将行外数据纳入其信息规划主流数据仓库,行外数据经常以原始数据来源格式存储在战略规划制定部门的数据文件夹中,有时还要根据需要到付费数据服务商处查询。
产生这种情况的原因有很多:
首先,数据范围广。对战略制定来说,数据是“韩信点兵、多多益善”,恰恰是这个多多益善,导致商业银行很难自己构建数据库来满足战略规划制定;
其次,数据不规范。需要的数据越多,数据的规范性越差,导致图片、视频、音频、文字等各种数据格式都有,将各种格式的数据归类、整理、清洗并建模,获得有价值的决策支持信息,难度非常大;
第三,单体数据价值小。对战略规划来说,每个信息都有价值,但具体到各类数据,其价值却可能不大,因此,在数据采集时,要获得信息管理部门的同意和支持,并整理入库的难度非常大;
第四,成本问题。虽然理论上讲,大数据分析是有价值的,但现实是,成本是显性的,收益是隐性的,特别是战略决策虽然基于大量的数据分析,但最终的决策却存在很大的主观性,定性的判断、领导的判断在战略方向的选择上,处于非常重要的位置。因此,成本问题也是约束大数据在战略决策中价值发挥的“拦路虎”。
综合来看,虽然大数据概念产生和广泛使用已有一定时间,但商业银行战略规划制定过程中的作用并不大。行外数据基本与数据库无缘,行内数据的完整性、有效性虽然完善了很多,但由于数据安全等制度约束,数据使用的便捷性和灵活性还存在很大不足。
未来前景:大数据外包服务商和人才外包
大数据在商业银行战略制定中的价值开发,必须考虑商业银行的特性。一方面,商业银行从大到小,规模相差几千倍甚至上万倍,不同等级的商业银行在成本投入、人才储备等方面的差距也很大;另一方面,不同类型的商业银行,对数据需求的着力点也不一样,大型商业银行更看重国际形势、国内形势、行业趋势,小银行更看重国内形势、区域特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22