
没有数据科学家大数据就玩不转了
数据科学家被媒体誉为21世纪最性感的职业,是企业界身价不菲、一将难求的的超级明星,这吓跑了很多准备尝试大数据的企业,实际上没有数据科学家企业一样可以玩转大数据。
如今, 一谈到大数据, 一个普遍的说法就是人才的缺乏。 数据科学家成为了21世纪最性感的职业等等。 哈佛商业评论以及咨询公司麦肯锡的报告都这么说, 再加上数据科学家们自身也乐意被打上这样的标签。
然而, 这种说法, 也让很多准备考虑大数据战略的企业面对大数据的机会望而却步了。 那么, 如果缺少数据科学家, 企业的大数据就真得玩儿不转了吗? 其实也未必。
这里, 当然不是说数据科学家不重要。 相反, 数据科学家这个职业在大数据时代非常重要。 在企业中, 数据科学家的工作, 实际上是联系企业的IT技术和企业所在行业专业知识的纽带。 这样的知识交集上的人才, 本身确实匮乏, 而且, 即使大数据又再大的发展,同时具备这样的知识的人才也还是少数。 然而, 就像我们在计算机行业发展的早期, 不能说因为乔布斯, 盖茨这样的人才太少就制约了行业发展一样。 如今, 街边柯达店的小伙子都能用PS修人像, 而我们也不需要要求柯达店的小伙子具备编写图像处理软件能力。
大数据时代也是一样, Google, Twitter, Facebook那样的大公司, 可以负担得起那些高精尖的数据科学家, 而小企业, 也可以有自己的方式来更好地利用数据。 下面, 以电子商务的公司为例子, 结合数据科学家的工作, 来看看如何能够在企业现有能力范围内进行数据方面的工作。
数据科学家的工作, 大致分为三个方面:
第一, 数据架构的搭建, 第二, 数据模型的建立, 第三, 数据分析。
下面我们来看看那些雇不起或找不着数据科学家的屌丝企业如何玩转大数据:
数据架构的搭建:
首先, 确定企业对数据的需求点。 对绝大部分商业企业来说, 其实每个业务经理都可以告诉你, 他们所需要的数据就是用户行为的数据, 比如, 用户购买行为, 用户对促销或者广告的反应, 用户的社交信息等等, 基本上, 每一类这样的信息, 都可以比较容易的进行归类。
这里的关键, 就是尽量把需要的数据范围进行限定, 这样就可以设定一些简单的数据输入模板, 从而把数据采集和数据整理问题简单化。 这里可以采用一些开源工具, 如Hadoop, Hbase, Hive, Pig等, 把各类数据进行整合。 2/8 原则一般是适用的, 也就是, 80%的进行运营支撑的需求可以来自于20%的数据。 对企业来说, IT技术人员和业务专家共同的协作, 加上一部分外部咨询的帮助, 应该可以搭建一个可用的架构。
数据模型的建立
数据科学家的另一部分工作就是数据模型的建立。 这些模型可能是描述型的模型, 也可能是预测性的模型。 这部分的工作, 也是数据科学家经常被神化的部分。 其实, 这部分工作, 比如说推荐系统, 用户个性化系统等等。 数据科学家所做的大量工作, 在于提取数据的“特征”, 选择合适的模型, 并把它们输入模型, 等待模型输出结果, 再验证, 调整特征的循环。 这部分的工作, 需要第一, 熟悉各类统计模型或者机器学习模型的建立。 第二, 也是更重要的一点, 就是行业知识的了解。 比如一个推荐系统, 最重要的就是把提取用户特征, 提取商品的特征。 如果建模的人对行业知识不了解的话, 那么模型就会很庞大和复杂, 也未必精确。 在这里, 行业的专家, 尽管对建模未必很精通, 他们的市场感觉往往是选择合适特征值的关键。
因此, 对电商企业来说, 招几个学统计的员工(或者外包), 再配合企业内部的行业专家, 也可以建一些适合企业需要的基本模型。 也许没有Google或者Facebook那么地精确, 但是对绝大部分企业来说, 也够用了。 这也不失为是一条在找不到合适的数据科学家(事实上精通本行业又精通建模的人才本来也是凤毛麟角)的情况下的解决之道。
数据分析
数据分析的本质, 是把“数据”变成“信息”, 并从中发现对企业运营有价值的东西。 这其实和任何理科或者工科的“观察 — 归纳 —关联 — 分析 —验证”的研究方法从本质上是一致的。 从这个角度来讲, 行业的专业知识, 在数据分析的时候, 更加重要。
即使你把欧洲大型强子对撞机的数据给数据科学家, 他也发现不了“上帝粒子”。
国内的很多人都会津津乐道 美国百货公司Target通过数据分析给怀孕少女推送婴儿产品的例子,而很多数据分析师或者数据科学家在提到这样的例子的时候, 也在有意无意的进行误导。 其实, 如果没有对用户和产品方面的专业知识, 光靠数据分析或者数据模型, 是很难做到的。 而事实上, 任何机器生成的模型, 要想实用的话, 也都得需要人工在反馈路径上进行一定程度上的调整。
在数据分析领域, 已经有很多的分析工具。 然而, 现在的这些工具, 大多数也还是比较复杂。 需要类似数据科学家或者数据分析师这样的专门人员来使用。 由于企业精细化运营的程度普遍不高。 数据分析师或者是BI的分析师本来就稀缺, 更不要说精通行业专业领域知识同时具备数据分析工具使用能力的人才了。 一个解决的方式, 就是把常用的分析尽量模板化, 数据的整理尽量简化。 尽量采用Excel这样简单大众的分析工具。 归根结底, 企业进行数据分析的目的, 是为了经营服务的。 简单的工具, 在使用,分享和沟通方面都有优势。 这样的解决方案当然不算得完美, 但是, 如果能让具备丰富行业经验的专家以行业经验来弥补数据分析工具的不足, 对企业来说, 也算得上是一个在缺乏数据科学家情况下的可以从数据分析中获益的方式。
在大数据时代, 数据科学家的重要性当然是毋庸置疑的。 不过, 就像网站内容管理系统那样, 大型网站可以雇顶级工程师来自建系统。 小企业也可以利用WordPress这样的系统来满足自身的需求一样。
企业在这个人才匮乏的大数据时代, 利用已有的工具, 结合自身对行业的专业知识, 采取合适的策略, 同样也可以从数据和数据分析中获益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15