大数据在安防领域的应用现状、方向与难点
大数据在安防领域应用也已全面展开,安防已进入大数据时代,如何利用音视频分析技术从这些数据中提取有效信息,找寻到对应的线索,是大数据挖掘的价值所在。
安防行业大数据应用现状
在大数据时代,作为海量数据的主要来源之一,安防行业相关应用产生了巨大的信息数据,特别是在当前大集成、大联网的环境下,数据量呈现飞速增长趋势,面对海量的数据,也带来了数据整合、数据存储、数据分析应用等一系列问题。通过寻求解决这些问题的方法,也进一步促进了大数据技术和产品在行业的落地应用。
当前安防行业本身数据资源主要还是视频资源,基于视频资源去比对、去关联、去拓展,而视频大数据处理主要还聚焦在数据的体量上,因此无论是在数据分析应用的深度和广度上,数据价值挖掘上,都无法满足精确防控、立体化防控的要求,无法更好的服务公共社会安全。
安防行业的大数据主要应用方向
在安防领域,大数据的应用目前主要有两个方向,一是智能交通,二是公共安全。
在智能交通领域,针对交通行业的海量数据处理需求,智能交通管理系统可以在海量数据、恶劣网络环境和复杂业务处理情况下,实现大量图片、车辆数据、视频数据的时时网络传输和快速持久化存储,同时对任意节点图像进行显示,对任意节点视频进行流畅播放、实时进行比对报警,快速进行多条件检索,并且将各类多媒体数据和车辆数据合二为一。系统实现对目前的城市道路交通中异常行为的智能识别和自动报警等,从而减轻了交管监控人员的工作负担,提高了监测的准确度,使得交通管理工作更高效。
在公共安全领域,应用大数据辅助公安人员快速开展治安防控,警情研判及指挥决策,发掘公安信息资源价值。如犯罪嫌疑人追查,可通过输入嫌疑人照片进行人脸特征识别并在所有视频中寻找该人脸;犯罪嫌疑车辆追查可输入嫌疑车的照片或颜色车型等相关特征在所有视频中寻找;人车物的轨迹分析即在所有视频中按照特征查找指定的人、车、物并绘制其时空轨迹。
安防大数据应用难点:
(一)数据整合问题
不同来源的大数据,分别存储于相互独立的系统中,将这些数据集中于统一的平台,是安防大数据实施的基础性工作,但行业、部门壁垒是最大障碍。即使只是公安内部的视频数据,各省、地市也互不相通,想采集集中也不是一件容易的事。即使集中后,如何找到这些不同类型数据之间的关系,从而挖掘出有价值的数据,也是难点。
(二)数据挖掘、分析算法的成熟度问题
对于安防数据中最重要的视频数据,对其进行智能视频分析和挖掘是很困难的事情。目前,除了车牌识别、人数统计等算法较为成熟外,对视频进行事件分析、人脸识别、摘要等技术都还没达到大规模的商用水平,这也极大地制约了安防大数据的实施。
(三)时效性问题
安防大数据的目的之一就是要解决现有安防系统内以事后查看、分析为主的数据(特别是视频数据)应用形式,还要增加以事前预警、实时处理,这对大数据处理技术的实时性要求很高。这种时效性就决定了视频安防大数据的高运算量、高传输带宽的要求。
(四)信息安全与用户隐私问题
安防行业,特别是公安行业对数据的安全性要求非常高,这也是造成数据的区域隔离的重要原因。同时,在利用安防大数据上,如何保护用户的隐私,也是一个非常重要的课题,目前主要采用数据脱敏的办法。当务之急就是将安防数据安全级别需要有明确的分级定义,不能一味强调安全而各自封闭,否则必将导致安防大数据分析成为无源之水。
(五)视频图像数据挖掘的难点
1.识别什么特征?一副图像或者一段视频可以有无数角度的标签属性去描述,什么才是我们需要的属性?这与我们需要得到的目的密切相关,这就需要公安图侦的人才来归纳终结。
2.识别算法开发难,由于是平面图像,因此特征的识别主要原理就是看图像区域中的轮廓、颜色、纹理与特征库进行比较。但是在同一个物体在不同监控角度的摄像头中显示出的轮廓都不相同,因此无法做到识别。
3.大规模数据处理难,即使做到了识别算法,但是如果要通过数据处理服务器的形式对大规模的视频进行结构化处理,这个建造成本巨大,其能源的耗费在中国这个夏季需要限电的情况里也不切实际。
(六)警务服务平台大数据难点:
1.如何将不同报警运营服务商之间的数据整合在一起?
2.我国多数报警运营网络尚未完成规模化建设,用户规模大、跨省市运营的网络很少,每家报警运营服务商的警情并发量不大,而且报警运营服务商之间普遍存在信息孤岛,很难通过大数据分析实现数据的增值。
3.大数据的挖掘是一个长期的过程,需要企业不断的尝试,挖掘出有意义的信息或规律,并将结果拿到市场上检验。
4.大数据自身也面临着挑战,数据的运用仍面临多种技术难关的束缚,大数据方面的人才比较缺乏,大数据的产品尚不成熟等问题都制约着大数据在报警运营服务领域的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18