
用一个实例告诉你,如何对产品进行数据分析
数据分析的核心并不在于数据本身,而在于设计有意义、有价值的数据指标,通过科学有效的手段去分析,进而发现问题优化迭代。数据分析因价值而存在,数据分析本就是一个价值增量的过程。
数据分析三个核心要点:
第一个问题就不多赘述了,重点实例解析第二、三个问题。数据分析的缘由/出发点很复杂,甚至有时候让人很焦灼,因为不同用户数据分析的出发点及分析过是完全不一样的。站在一个更高视角分析数据,或者说数据分析的维度不仅限于产品思维概念上的数据需要,而是一个关乎产品一体性的命题。
下面将逐一以实例的形式解读数据分析的两个核心问题,大致分为以下几步:
产品名称:企查查APP V9.1.8
产品愿景:中国企业信息搜集的综合体,为投资者、金融相关从业者等提供企业的一站式信息服务。
分析范畴:产品迭代、产品优化、产品分析/验证
背景概述:现阶段笔者从事征信行业的产品工作,正在参与一款企业信用信息查询APP V2.x的升级迭代。此次的该类分析过程侧重数据指标制定和建模的过程,而并非实际数据的展示(别人家的应用,没有办法拿到完整的数据源)。再次强调,数据指标的制定远比数据分析过程要重要的多或者说更加富有创造性。
1.商业模式/盈利方式分析
免费增值模式,先做成流量的入口,后期分享流量红利扩大转化率。
2.了解产品现状/定量分析产品
2.1 用户分析
用户规模:
用户群体按照群体大致分为个人、企业,分析出个人和企业用户的人数比例,明确整体的用户分布情况。
每月/日/日的新增用户、流失用户、回流用户的比例的走势,选择恰当的走势变化渠道;
用户质量:产品粘性及病毒性的反应,体现在用户的活跃度上,一般包括,日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
采用同期群和用户分类的分析方法,特定用户群体的特定分析过程,用户质量也是渠道或营销活动效果的间接体现,以便后期及时的调整和处理;
用户质量的标准制定,包括忠诚用户、联系活跃用户、流失用户等等,为反应不同指标设置特定的用户质量指标;
2.2 应用分析:
启动次数,某日/周/月的启动次数占所选时段总启动次数的比例,直接反应用的生活时间成本;
版本分布,对开发和维护的意义非常深刻,展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
使用情况,统计周期内,一次启动的使用时长;一天内启动应用的次数;用统一用户相邻两次启动间隔的时间长度;
设备终端和错误分析也是很有必要的;
2.3 行业分析:
a. 行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个指标的数据、排名及趋势,有助于衡量应用的质量和表现;
b. 了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
以上并没有对具体的数据源实施实质性的分析并结论,这部分的都是基本的处理过程就不做赘述。而下文,我将结合实际业务场景深入分析《企查查APP V9.1.8》的某个数据指标。
业务场景:
1. 查首页支持企业名称、人名、品牌名等信息的模糊查询,并且在搜索系统之下直接提供四个维度[企业名称]、[股东高管]、[经营范围]、[品牌管理]的一级辅助搜索条件。
2. 企业信息维度算是一款企业信息服务平台的资源性优势,也是一款内容应用的核心模块。不同类型的用用户对不同类型的信息的感兴趣程度都存在个性化的特征,而用户行为特征数据的记录和挖掘是一件意义非凡的事情。
产品分析:
数据指标:
1. 不同检索维度的搜索量;
结论:以信息检索维度的搜索量,选出哪些企业信息搜索维度置于条件搜索中,并决定其分布的顺序和位置;
2. 不同描述维度的查询量
结论:
a. 以信息描述维度的查询次数,区分哪些企业信息描述维度置于的受关注程度,量化区分不同信息的关注度和用户价值;
b. 交叉分析不同维度的信息,用户属性,比如:行业+查询维度,综合分析不同特征的用户群的核心关注点。该类信息的分析挖掘有利于新产品的创新和尝试,比如精简版企业信用报告,”体量最小化,价值最大化”,不错的产品尝试和良好的用户体验;
c. 内容受欢迎程度及需求的迫切程度,面向不同类型的用户,比如:普通用户、企业用户(行业细分——P2P、银行、VC、海关、政务等等),内容分级、资源分层更好地配合免费增值模式、会员等级产品形态。正对不同用户特征给予不同的需求满足形式都是值得尝试和探索的,单一、传统的直销的商业模式或许有被迭代升级的可能;
数据分析很简单,并不是大家所描述地那样神秘不可破。产品数据分析意义在于指导产品设计,传达感性认知背后的理性意义。斗胆分享以下我个人的数据分析理念(关键字):
产品阶段
分析目的
商业模式
产品形态
无论数据分析的结论积极还是负面,都是产品价值映射,必须投以客观的态度。数据分析是验证产品设想的最具说服力的工具,但忽略数据分析背后的人性和商业思考,那么数据分析也就在根本上失去了意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15