京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘在企业中应用的四种途径
数据激增是当今社会的一大特性,如何有效的利用数据挖掘方法,从海量信息中提取出有用的模式和规律而不仅仅是“望洋兴叹”,已经成为人们迫切的需求。企业应该将数据挖掘视为一大法宝,利用它将数据转化为商业智能,提高企业的核心竞争力。从投资的角度来看,如果对数据研究所支付的费用少于研究成果所带来的价值,数据挖掘就值得去做。
正如修行的省悟过程一样,要将数据挖掘引入公司,并非只有一种途径。我们的最终目的是解决企业的业务问题,为企业提供更大的商机。本文简要介绍了将数据挖掘技术应用到企业中的四种有效途径。
一、购买成熟的模型
如果企业的问题已经有了现成的解决方案,便没有必要再去耗费时间和资金去建立一个新的模型了。这个模型的形式可能是一系列的关联规则,也可能是一个确定了系数的回归模型,或是一个训练好了的神经网络模型——它可以直接应用到实际问题中。我们要做的只是将自己的数据“喂”给它,模型经过自动消化处理,得出一个精简的答案:诸如哪些老客户面临流失的危险?哪些新客户是最有潜力带给公司价值的?
这种方法采用了“拿来主义”,是最节省气力的,不失为一个好办法。美国的银行大都采用了信用评估系统,当客户递交贷款申请后,该系统根据用户填写的一大串资料快速对客户信用风险做出预测。实际表明,该系统能够大大提高工作的效率,而且效果也不会逊于信贷员的经验判断。但是,这种评分机制将众多不同的数据浓缩为一个结果,很多细节上的差别无疑被忽视了——客户信用评分高或低的具体原因没有被体现出来。
另外,这种方便、快捷的方法也极其缺少灵活性:如果使用的条件发生了变化,模型难以随之做出改动。因此,必须要注意使用购买模型的先决条件:你目前的形式包括产品、市场、客户关系等必须和该模型当初建立时的假设是一致的。盲目生搬硬套,势必会产生毫无价值甚至荒谬的结果,一旦不经意的应用,危害就难说了。
二、使用行业应用软件
顾名思义,行业应用软件是为某一行业领域量身定做的。从底层的数据分析处理一直到顶层的交互界面都是结合特定行业的业务流程和专业特色来设计、开发的。虽然它的应用领域比较狭窄,但较之直接购买的模型,它可以更多的融入和结合人的判断,提高了灵活性。而且,相对于通用数据挖掘软件,它能够很好的利用专业领域的各种知识。
目前比较流行的客户流失管理软件,被电信、超市、电子商务等许多不同类型的企业所应用,他们共同的目标是为了提前发现有可能流失的客户群,及时反应,做出相应的挽留措施。此类软件可以结合企业自身的规模、用户、产品、交易额、市场环境、挖掘目标等具体条件来控制和实施数据挖掘的过程。
通常,行业应用软件里嵌入了多个建模的模板,使用向导的方式辅助用户完成模型的建立,然后从中选取最优。其实,这种“最优选择”也只是相对的,因为辅助建模的过程是僵硬的,它无法完成数据挖掘中最重要的部分,包括正确理解和定义商业问题、将有用的数据挑选出来转换为潜在的信息、对建模结果进行理性的解释和评价。
固然,这类软件采用了专业领域的表达方式和解决特定问题的用户界面,从而易于理解而且自动性高,使实施的过程变得相对简单。但是,如果你的企业拥有更加复杂的数据和更加具体的挖掘目标,就需要采用更加高级的数据挖掘方法了。
三、聘请专家实施项目
他山之石,可以攻玉。如果数据挖掘并非只是为了解决眼前的问题,而是着眼于企业长远的成长;如果企业的数据来自众多系统,格式复杂也并非纯净;如果不明确如何利用挖掘的成果创造新的商机;如果企业内部的成员没有足够的能力保证项目的顺利实施——此时,聘请外部专家来引导数据挖掘项目走向成功,才是明智的选择。
你可以联系数据挖掘软件销售商(诸如SAS、SPSS、Miner等),邀请数据挖掘工程师带着功能强大(操作同样复杂)的数据挖掘软件来到企业,将他们的专业知识应用到企业的数据挖掘过程中;你也可以带着企业的数据到高校或咨询公司等数据挖掘中心,利用他们的软件和硬件,和他们一起工作。
如本文开始所言,数据挖掘的过程绝非一蹴而就,而是如同僧人的修行省悟,可能漫长而反复。建模方法千变万化,而数据静静的呆在那里,十足一副以不变应万变的姿态。这里有条条大路,但并非都能通向罗马,为了找到最有效的模型,我们通常需要反复检验,做出选择。一般存在以下几个决定性的步骤需要放慢脚步,仔细考察:首先,根据现有的人力、物力选取建模工具;其次,根据数据的特点对模型分类,制定标准来拆分数据,从而建立不同的模型;然后,调整参数,从决策树、神经网络等算法中选取最有效的建立最终模型;另外,建模过程中要具体问题具体分析,有效的抽取、清洗、转换、重组数据。
需要强调的是,在这个过程中一定要注意企业人员和挖掘人员之间的沟通和协调,才能将企业积累的商业智慧和挖掘人员的专业知识完美结合。
四、量身定做开发自己的数据挖掘平台
由于商业问题的特殊性,数据挖掘工具并非像某些促销广告所言:“总有一款适合您”。通过考察企业问题的特殊性,对购买软件、聘请专家所需要的投资和挖掘成果应用后可能带来的回报等因素进行综合比较,你也可以考虑开发一个适合自身环境的数据挖掘工具。虽然可能会花去较长的时间,但成功之后,受益久远。这个量身定做的数据挖掘工具可以随时根据企业环境的变化做出修正和调整,并且有坚实的技术支持作为保障。
这类状况在商业范围内比较少见,通常在医药、体育等自身数据差异较大、数据挖掘研究尚不全面成熟的领域使用。主要表现为走进高校,和具有专业知识的导师及其研究生小组互动完成。
以上方法的选择由企业环境所决定,可以选其一,也可以将几种方法捆绑起来,优势互补。最后还要强调两点:第一,并非所有的软件都能完全实现自动化,也并非所有的软件都能取代人的智慧,如果没有专业的数据挖掘技能,即使数据挖掘工具的功能再强大,也很难产生好的结果。所以,必须有数据挖掘领域的专家参与,以人为本,才能保证企业数据挖掘流程沿着安全、有效的轨道进行。第二,企业自身远比外部更了解自己的业务和客户,最好的方法是在企业内部培养数据挖掘骨干人员——只有同时做到精通企业问题和数据分析方法,才能将数据挖掘的效用发挥到极致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17