京公网安备 11010802034615号
经营许可证编号:京B2-20210330
说说数据分析的数据敏感性?
一、从数据维度做拆分,让目标更加落地。
我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。
天猫的双11刚刚过去,马云又创造了新的成绩,912亿。从去年的571亿到今年的912亿,马云怎么就敢说今年可以做900亿呢?在设定这个目标之前就少不了对目标的拆分。
900亿的成交,首先按照过往的类目占比,拆分到各个类目,每个类目承担多少销售指标,类目再按照过往的卖家成交额占比拆分到各个卖家,每个卖家承担多少销售指标。卖家再根据各自的日常店铺转化率反推需要多少流量,各类目再结合平台能提供的流量,就可以得到流量的缺口。接下来再按照各渠道获取流量的成本来计算,就可以得出双11平台需投入的营销经费数值。整个900亿的目标,通过这样的拆分,就变得明确可执行了。
无论做什么事情,想做成,都离不开对目标的拆解,任何抽象的事物都可以通过数学的方法来解决,把事情数据化会让事情更简单可执行,也更容易考核效果。
二、很多业务其实就是一个公式。
我刚开始接触电商接受业务培训,第一节课就只讲了一个公式。
成交额=买家数x客单价
如果你想提升成交额,要么提升买家数,要么提升客单价。我们可以盘点一下,我们见过这么多的促销手段,有哪个不是为了提升这两个数值的。满减、满送、买二送一,这是为了提升客单价的手段;秒杀,团购,这是为了提升买家数的手段(秒杀的核心在于集聚大量流量做关联销售)。
不仅仅如此,这个公式依据不同的业务场景还可以拆分成多种形式。
买家数 = 商详uv x 下单率 x 付款率
商详uv = 广告展现 x 广告转化率 = 搜索展现x搜索转化率 = 活动展现x活动点击率
于是,决定成交额的因素就变成了各个渠道的转化率、图片的点击率、产品的下单率、付款率,这样多的细节共同决定了最后的成交额。接下来针对这些细节分别去做优化,这个过程就叫依据数据做精细化运营。
仔细想想,你自己的业务又何尝不是一个公式呢?试着找到自己的公式,去拆分它,你也许会不少改进的方法。
三、运营说到底就是一个漏斗。
互联网的模式下,无论做什么产品,根本目的都是为了变现,只要是变现,就涉及到了转化。而转化其实就是一个漏斗模型。
漏斗模型是运营数据里提到的最多的词了,在业务的链条里,每个环节的用户数是呈不断衰减的,运营要做的事,就是想尽一切的办法来提升漏斗中各环节的转化率。
比如一个电商的活动页,它的漏斗模型应该是这样的:

有了这么个漏斗,我就可以分析每个环节代表了什么,我怎样去改善:
1)pv/uv:页面访问深度,直接体现了这个页面是否吸引人,用户在这个页面是否产生点击的兴趣。
2)活动页—>详情页uv:页面上的内容是否吸引人,商品是否是用户喜欢的,需根据页面点击情况及时替换点击效果差的商品。
3)详情页uv—>下单人数:商品的转化率如何,是不是爆款,此处转化过低需替换高转化的商品。
4)下单人数—>付款人数:商品的付款率,如果低于正常值,需要卖家催单。
需要注意的是,漏斗模型是需要对比的,如果仅仅只有一个漏斗模型,那么就只是数据的陈列,如果要做分析的话,就一定要有对比,比如和往期的漏斗作对比,比如与平台的均值作对比,只有在对比过程中才会发现问题。
我们作为产品运营的同学,必须要熟悉我们产品中每一个关键数据,日均的uv是多少、转化率是多少,下载量是多少,这样在数据出现异常的时候才可以第一时间发现,熟悉产品数据,是对数据敏感的前提。
四、一篇完整的数据分析报告应该包含哪些内容?
前面讲了一些理论层面的,最后给一个数据分析模板给大家,供参考。
1、首先你需要根据活动目标确定你的目标达成率,完成百分比,提升百分比。这是这次活动取得的成果,在一开始就写。如:
本次活动 uv 24w(20w,↑ 20%),uv价值 3.6(3,↑ 20%)
2、如果是发周报、月报之类的数据,接下来就应该是核心数据走势图

在这张图里,要对每个数据的拐点做分析,比如图中11月7日、8日两天的uv价值有明显提升,这个的原因,要找到并写在报告里。
3、接下来流量分析,主要为流量来源分布,各渠道流量转化率分析。流量涨了,要找到是哪个渠道带来的流量涨了,为什么涨了,分析这里的原因。流量的质量如何,哪个渠道的流量转化率高。这里需要两个饼图,一个是流量渠道占比,一个是渠道带来的转化占比。

从上面的两个饼图里,我们看到明显站内流量的转化率更高,而广点通带来的流量转化率偏低。另外,通过与往期的渠道来源占比作比较,我们可以看到当前流量构成上的变化。
3、转化率分析,也就是漏斗模型分析。前文提到了,漏斗模型需要对比的数据,所以在此处的分析,我们需要列两个漏斗模型。

对漏斗模型各环节转化的分析,这里主要和往期数据做对比,结合活动页面、流量、产品功能等多方面因素,尝试分析这里各环节转化率提升或者降低的原因。
4、模块点击分析
我们设计的产品页面,或者活动页面,我们需要知道这个页面的结构是否合理,用户的点击分布,这有助于我们改善。当我们尝试新的页面样式的时候,更应该对这里的模块点击做分析,可以验证我们的结构是否对数据带来了改善。

模块点击分析主要是从点击饼图,及其各模块转化率的角度来分析,点击饼图可以看到用户的需求,模块转化率则反应了各个模块内容是否满足用户的需求,如果模块转化率较低,则需要考虑这个模块的内容是否优质,甚至这个模块是否需要改变样式。
5、改进及优化
每次的活动总是有做的好的地方和做的不好的地方,我们数据分析的目的就是为了积累经验,沉淀方法论,在每一篇数据报告的结尾,我们需要对这一次活动做一个总结,比如尝试了一个新的玩法,效果如何,尝试了一个新的页面样式,点击率是否有提升,等等。把经验应用于之后的活动策划当中。
五、数据不是万能的
写在最后,想说一点,数据不是万能的。
我们常做的数据分析,是建立在海量数据的情况下,但往往在初创公司,数据系统还不完善,数据量不够的情况下,数据只能作为参考,过分相信数据往往会导致做出错误的判断。
数据有很多指标,统计维度又有很多种,如果深挖下去,会耗费大量的精力,但却不一定会有成效,所以找出最关键的几个数据指标,对其最合理地分析,这点很重要。
今天就说这么多啦。做数据分析,重点不在数据,而在分析,对数据敏感,就是能清楚数据异常背后的原因,这需要经验,也需要你的思考和执行力。希望你可以成为一个对数据敏感的互联网人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31